Advertisement

Deep Drawing Process of the AISI 304 Stainless Steel Cup: Interaction Between Design Tools and Kinetic of Plastic Strain Induced Martensite

  • Zoubeir Tourki
  • Mohamed Cherkaoui
Conference paper
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 114)

Abstract

Mechanisms of transformation plasticity deformation are reviewed for martensitic transformation of stainless steel material, the transformation strains may be accommodated elastically, plastically or by self accommodation. The main of the present work consists in the analysing of the interaction between the kinetic of plastic strain induced martensite (Psim) in the Aisi 304 stainless steel and the design parameters in the deep drawing process.

Keywords

kinetic of martensitic transformation stainless steel deep drawing self accommodation yield surface hardening behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Shinagawa, K. Mori and K. Osakada, Finite element simulation of deep-drawing of stainless steel sheet with deformation-induced transformation, J. Mater. Process. Technol, 27(13) (1991) 301–310.CrossRefGoogle Scholar
  2. [2]
    S.S. Simandiri, Optimizing the aluminum deep-drawing process, Sme technical paper, MF91–415 (1991).Google Scholar
  3. [3]
    Y. M. Huang and J. W. Chen, Influence of lubricant on formability of cylindrical cup-drawing, J. Mater. Process. Technol. Volume 63, Issues 1–3, January (1997), 77–82.CrossRefGoogle Scholar
  4. [4]
    M. Li, Prediction of optimum dimension of the crystalline grains for the deep-drawing of metals, J. Mater. Process. Technol., 26(3) (1991) 349–354.CrossRefGoogle Scholar
  5. [5]
    B. M. Gonzalez, C.S.B. Castro, V.T.L. Buono, J.M.C. Vilela, M.S. Andrade, J.M.D. Moraes and M.J. Mantel, The influence of copper addition on the formability of Aisi 304 stainless steel. Mat. Seien. And Engineering A 343 (2003) 51–56.CrossRefGoogle Scholar
  6. [6]
    H. Bargui, H. Sidhom and Z. Tourki (2000), Martensite induite et comportement en écrouissage de 1’acier AISI304, Materiata et Techniques N° 11–12 , pp. 31, 41.Google Scholar
  7. [7]
    G.B. Olson, and M. Cohen, (1975), Kinetics of Strain Induced Martensitic Nucleation, Metall. Trans. N°6A, pp.791–795.CrossRefGoogle Scholar
  8. [8]
    J. A. Venables, Philos, Magazine 7 (1962) 35.CrossRefGoogle Scholar
  9. [9]
    W. O. Binder, Metal Progress 58 (1950) 201–207.Google Scholar
  10. [10]
    B. Cina, J. Iron Steel Inst. III (1954) 406–422.Google Scholar
  11. [11]
    Y. M. Huang, Jia-Wine Chen, Influence of the toll clearance in the cylindrical cup-drawing process, Journal Materials Processing Technology 57 (1996) 4–13.CrossRefGoogle Scholar
  12. [12]
    M. Cherkaoui, Z. Tourki, H. Bargui and H. Sidhom, Micro-mechanical modeling coupled to the quantitative and microstructure analyses on the plastic induced martensite in the Trip steels (AISI304//AISI316), submitted to the Int. Journal of Plasticity. Google Scholar
  13. [13]
    F. Abrassart (1973), Stress-induced γ→α Martensitic Transformation in two Carbon Stainless Steels, application to Trip Steels Metallurgical Transactions, Vol. 4, Sep. 73, pp 2205–2216.CrossRefGoogle Scholar
  14. [14]
    G. Ferron, R. Makkouk and J. Monreale, (1994) A parametric description of orthotopic plasticity in metal sheets, Int. J. of Plasticity, vol. 10, n°5, pp. 431–449.CrossRefGoogle Scholar
  15. [15]
    Tourki Z., Makkouk R., Zeghloul A. and Ferron G. (1994), Orthotropic plasticity in metal sheets: a theoretical framework, J. of Materials Processing Technology. 45 pp. 453–458.CrossRefGoogle Scholar
  16. [16]
    D.C. Drucker, Journal Appl. Medi., (1949) 16 349.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Zoubeir Tourki
    • 1
  • Mohamed Cherkaoui
    • 2
  1. 1.Laboratoire de Mécanique Matériaux et procédés Ecole SupérieureSciences et Techniques de Tunis 5Bab Ménara TunisTunisie
  2. 2.Laboratoire de Physique et Mécanique des Matériaux CNRS, ISGMPUniversité de MetzMetz Cedex 01France

Personalised recommendations