Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 114))

  • 456 Accesses

Abstract

The simulation by traditional uni-dimensional rheological models of viscoelastic unloading to zero stress after tensile testing of polyethylene and its composites is poor. The models significantly underestimate recovery rates, even with small amounts of strain. The use of a finite number of relaxation times does not sufficiently increase recovery rates during unloading when models are generated from the responses of materials under load. Similar results and observations are obtained using rate jumps in loading and unloading. 3D models developed using local state methods require that an additional recovery potential be used. A simple 2D model is proposed here which takes into account the differences in local behaviour seen during loading and unloading, thus justifying the existence of this potential. The similar situation that exists for composites means that the phenomenon must not be confused with material damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. M.C. BOYCE, D.M. PARKS, A.S. ARGON, “Large Inelastic Deformation of Glassy Polymers, Part I: Rate-Dependent Constitutive Model”, Mechanics of Materials, 7 15–33, 1988.

    Article  Google Scholar 

  2. S. AHZI, A. MAKRADI, R.V. GREGORY, D.D. EDIE, Modeling of deformation and strain-induced crystallization in poly(ethylene terephtalate) above the glass transition temperature, Mechanics of materials, in press, 2003.

    Google Scholar 

  3. M. BELOUETTAR, PhD. University of Metz, 1997 (in french).

    Google Scholar 

  4. J.S. BERSTROM, M.C. BOYCE, Constitut. Mod. of the large strain time dependent behavior of elastomers, J. Mech, Phys. Solids, (46), N°5, 1998, pp. 931 — 954.

    Article  Google Scholar 

  5. J.L. CHABOCHE, Formalisme général des lois de comportement, applications aux métaux et aux polymères, INPL, C. G’sell, J.M. Haudin, 1995, pp. 119 — 140.

    Google Scholar 

  6. S. CHAMBAUDET, P.M. LESNE, C.G’SELL, Simulation of compression tests on polymers and unidirectional composites : Large strain and viscoplastic matrix behavior, Annales des composites, 1, 1998, pp. 3 — 17.

    Google Scholar 

  7. N. CRITESCU, Viscoplasticity, North Holland, Amsterdam, 1972.

    Google Scholar 

  8. A.D. DROZDOV, J.C. CHRISTIANSEN, A model for the elastoplastic behavior of isotactic polypropylene below the yield point, Macromolecular Matr. and Eng., in press.

    Google Scholar 

  9. J. KICHENIN, Comportement mécanique du polyethylene, application aux structures gazières, PhD. Ecole Polytechnique, 1992 (in french).

    Google Scholar 

  10. L.E. MALVERN, Experimental studies on strain rates effets. Journal of Applied Mechanics, 18, 1961, pp. 203, 208.

    Google Scholar 

  11. J. MANDEL, Propriétés mécanique des matériaux, Eyrolles, 1978

    Google Scholar 

  12. E.F. OLEINIK, O.B. SAMALATINA, S.N RUDNEV, S.V. SHENOGIN, A new approach to treating plastic strain in glassy polymers, Polymer Science, (35), N°11, 1993, pp. 1819— 1849.

    CAS  Google Scholar 

  13. Y. REMOND, S. PATLAZHAN, Experimental observations on the viscoelastic unloading of polyethylene and polypropylene in relation with constitutive laws, Euromech 438 : Constitutive eq. for pol. microcomposites, Vienne, July 2002.

    Google Scholar 

  14. J. SALENCON, VISCOÉLASTICITÉ, Presse de l’Ecole Nationales des Ponts et Chaussées, 1993.

    Google Scholar 

  15. R.A. SHAPERY, Journal of Polymer Eng. Science, 1969, (9), pp. 295 — 310.

    Article  Google Scholar 

  16. V. SOKOLOVSKII, Propagation of elastic-viscoplastic waves in bars of plastic deformations, Prikl. Math. Mekh. 12, pp, 61–280, 1948 (en russe).

    Google Scholar 

  17. M. STEHLY, Y. REMOND, On numerical simulation of cyclic viscoplastic and viscoelastic constitutive laws with the large time increment method, J. Mechanics of time dependent materials, (6), 2002, pp. 147 — 170.

    Article  Google Scholar 

  18. J.D. WEBER, Comportement du polyéthylène dans les essais de traction avec saut de vitesse, Cahier du groupe fraçais de rhéologie, novembre 1973.

    Google Scholar 

  19. C. ZENER, Elasticité et anélasticité des métaux, Trad. J. Chatelet, Dunod, 1955

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Remond, Y. (2004). Constitutive Modeling of Viscoelastic Unloading of Glassy Polymers. In: Ahzi, S., Cherkaoui, M., Khaleel, M.A., Zbib, H.M., Zikry, M.A., Lamatina, B. (eds) IUTAM Symposium on Multiscale Modeling and Characterization of Elastic-Inelastic Behavior of Engineering Materials. Solid Mechanics and Its Applications, vol 114. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0483-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0483-0_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6529-2

  • Online ISBN: 978-94-017-0483-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics