Advertisement

Gradients of Hardening in Nonlocal Dislocation Based Plasticity

  • George Z. Voyiadjis
  • Robert J. Dorgan
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 114)

Abstract

In this work, a thermodynamically consistent framework for a gradient enhanced plasticity model is given to introduce material length scales through the second order gradients of both the kinematic and isotropic hardening variables. In order to give a micromechanical basis for the gradient enhanced continuum model, the evolution equations of the internal state variables derived through the gradient theory are compared to the evolution equations based on dislocation theories involving mobile and immobile dislocations, and the gradient coefficients are defined using material parameters from thes dislocation theories.

Key words

Gradient dislocation plasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aifantis, E.C., In S. N. Atluri and J. E. Fitzerald (eds.), NSF Workshop on Mechanics and of Damage and Fracture, Georgia Tech., Atlanta, 1–12 (1982).Google Scholar
  2. Aifantis, E.C., In G. C. Sih and J. W. Provan (eds.) Defects, Fracture, and Fatigue (Proceedings of International Symposium held in May 1982, Mont Gabriel, Canada), Maetinus-Nijhoff, The Hague, 75–84 (1983).CrossRefGoogle Scholar
  3. Aifantis, E.C., J. Eng. Mater. Technol. (Transactions of ASME), 106: 326–330 (1984a).CrossRefGoogle Scholar
  4. Aifantis, E.C., Int. J. Engng. Sci, 22: 961–968 (1984b).CrossRefGoogle Scholar
  5. Aifantis, E.C. and Hirth, J.P. (eds.), The Mechanics of Dislocations, ASM, Metals Park, 1985.Google Scholar
  6. Aifantis, E.C., Int. J. Plast., 3: 211–247 (1987).CrossRefGoogle Scholar
  7. Aifantis, E.C., J. Eng. Mat. Tech., 121: 189–202 (1999).CrossRefGoogle Scholar
  8. Bammann, D.J. and Aifantis, E.C., In A.P.S. Selvadurai (ed.), Mechanics of Structured Media, Preceedings of the International Symposium on the Mechanical Behaviour of Structured Media, Ottawa, 79–91 (1981).Google Scholar
  9. Bammann, DJ. and Aifantis, E.C., Acta Mech., 45: 91–121 (1982).CrossRefGoogle Scholar
  10. Bammann, D.J. and Aifantis, E.C., Acta Mech., 69: 97–117 (1987).CrossRefGoogle Scholar
  11. Fleck, N.A. and Hutchinson, J.W., J. Mech. Phys. Solids, 41(12): 1825–1857 (1993).CrossRefGoogle Scholar
  12. Menzel, A. and Steinmann, P., J. Mech. Phys. Solids, 48: 1777–1796 (2000).CrossRefGoogle Scholar
  13. Mühlhaus, H.B. and Aifantis, E.C., Int. J. of Solid and Structures, 28: 845–857 (1991).CrossRefGoogle Scholar
  14. Vardoulakis, I. and Aifantis, E.C., Ingenieur — Archive, 59: 197–208 (1989).CrossRefGoogle Scholar
  15. Walgraef, D. and Aifantis, E.C., J. Appl. Phys., 58: 668–691 (1995).Google Scholar
  16. Voyiadjis, G.Z. and Deliktas, B., Mech. Research Communications J., 27(3): 1 (2000).Google Scholar
  17. Voyiadjis, G.Z., Deliktas, B., Aifantis, E.C., J. Eng. Mech., 127(7): 636 (2001).CrossRefGoogle Scholar
  18. Voyiadjis, G.Z., Dorgan, R.J. and Dorroh, J.R., Proc. of the 2001 Energy Sources Tech. Conference & Exhibition, ASME Publishing Company, Houston, Texas (2001).Google Scholar
  19. Voyiadjis, G.Z. and Dorgan, R.J., Arch. of Mech., 53(4–5): 565–597 (2001).Google Scholar
  20. Walgraef, D. and Aifantis, E.C., J. Appl. Phy., 58: 688–691 (1985).CrossRefGoogle Scholar
  21. Walgraef, D. and Aifantis, E.C., Res Mech., 23: 161–195 (1988).Google Scholar
  22. Zbib, H.M. and Aifantis, E.C., Res Mechanica, 23: 261–305 (1988).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • George Z. Voyiadjis
    • 1
  • Robert J. Dorgan
    • 1
  1. 1.Department of Civil and Environmental EngineeringLouisiana State UniversityBaton RougeUSA

Personalised recommendations