Advertisement

On PLC Band Propagation Velocity under Stress-Controlled Tests in Aluminum Alloys

  • Mohammed Abbadi
  • David Thevenet
  • Peter Hähner
  • Abderrahim Zeghloul
Conference paper
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 114)

Abstract

Plastic flow of solid solutions, particularly lightweight alloys, is unstable within a certain regime of temperature, ageing and loading rates. This instability of strain rate softening type is associated with dynamic strain ageing due to the interaction between mobile dislocations and clouds of impurities and is characterized by the appearance of serrations (respectively strain bursts) when testing is performed at constant strain rate (respectively constant stress rate). Each serration or strain burst corresponds to the localization of deformation in a band which may propagate along the tensile specimen. To investigate the effect of testing conditions on band propagation velocity, tensile tests were carried out with a soft machine (constant stress rate) on two aluminium alloys of the 5000 and 7000 series. It is important to note that a decrease of band propagation velocity with increasing stress rate was observed for different temperatures and ageing. This trend is well predicted by a recent model proposed by Hähner.

Keywords

plastic instability dynamic strain ageing band propagation velocity soft tensile machine aluminum alloy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. G. McCormick, “A model for the Portevin-Le Chatelier effect in substitutional alloys”, Acta Metall., vol. 20, pp. 351–354, 1972.CrossRefGoogle Scholar
  2. [2]
    A. Van den Beukel, “Theory of the effect of dynamic strain aging on mechanical properties”, Phys. Stat. Sol (a), vol. 30, pp. 197–206, 1975.CrossRefGoogle Scholar
  3. [3]
    L. P. Kubin, and Y. Estrin, “The Portevin-Le Chatelier effect in deformation with constant stress rate”, Acta Metall, vol. 33, pp. 397–407, 1985.CrossRefGoogle Scholar
  4. [4]
    D. Thevenet, M. Mliha-Touati, and A. Zeghloul, “Characteristics of the propagating deformation bands associated with the Portevin-Le Chatelier effect in an Al-Zn-Mg-Cu alloy”, Material Science and Engineering A, vol. 291, pp. 110–117,2000.CrossRefGoogle Scholar
  5. [5]
    P. Hähner, A. Ziegenbein, E. Rizzi, and H. Neuhäuser, “Spatiotemporal analysis of Portevin-Le Chatelier deformation bands: Theory, simulation, and experiment”, Physical Review B, vol. 65, 134109, pp. 1–20, 2002.CrossRefGoogle Scholar
  6. [6]
    P. Hähner, A. Ziegenbein, and H. Neuhäuser, “Observation and modelling of propagating Portevin-Le Chatelier deformation bands in Cu-15 at.% Al polycristals”, Philosophical Magazine A, vol. 81, N° 6, pp. 1633–1649, 2001.CrossRefGoogle Scholar
  7. [7]
    P. Sapalidis, D. Dodou, P. Hähner, M. Zaiser, and E. C. Aifantis, in Influence of Interface and Dislocation Behavior on Microstructure Evolution, vol. 652, MRSSymp. Proc, M. Aindow, M. Asta, M. V. Glazov, D. L. Medlin, M. D. Rollet, and M. Zaiser, Eds., 2001, Y 8.26.Google Scholar
  8. [8]
    D. Thevenet, M. Mliha-Touati, and A. Zeghloul, “The effect of precipitation on the Portevin-Le Chatelier effect in an Al-Zn-Mg-Cu alloy”, Material Science and Engineering A, vol. 266, pp. 175–182, 1999.CrossRefGoogle Scholar
  9. [9]
    A. Karimi, “Etude sur machine molle de la déformation plastique hétérogène- cas d’un acier austénitique”, Thèse de Doctorat de l’Ecole des Mines de Paris, 1981.Google Scholar
  10. [10]
    M. Dablij, and A. Zeghloul, “Portevin-Le Chatelier plastic instabilities: characteristics of deformation bands”, Mater. Sei. Eng. A, vol. 237, pp. 1–5, 1997.CrossRefGoogle Scholar
  11. [11]
    H. M. Zbib, and E. C. Aifantis, “A gradient-dependent model of the Portevin-Le Chatelier effect”, Scripta Metall, vol. 22, N°8, pp. 1331–1336, 1988.CrossRefGoogle Scholar
  12. [12]
    V. Jeanclaude, and C. Fressengeas, “Propagating pattern selection in the Portevin-Le Chatelier effect”, Scripta Metallurgica et Materialia, Viewpoint Set 21, vol. 29, pp. 1177–1182,1993.CrossRefGoogle Scholar
  13. [13]
    P. Hähner, “Modelling the spatio-temporal aspects of the Portevin-Le Chatelier effect”, Mater. Sei. Eng. A, vol. 164, pp. 23–34, 1993.CrossRefGoogle Scholar
  14. [14]
    P. Hähner, “Modelling of propagative plastic instabilities”, Scripta Metallurgica et Materialia, Viewpoint Set 21, vol. 29, pp. 1171–1176, 1993.CrossRefGoogle Scholar
  15. [15]
    P. Penning, “Mathematics of the Portevin-Le Chatelier effect”, Acta Metall, vol. 20, pp. 1169–1175, 1972.CrossRefGoogle Scholar
  16. [16]
    M. Abbadi, P. Hähner, and A. Zeghloul, “On the characteristics of Portevin-Le Chatelier bands in aluminum alloy 5182 under stress-controlled and strain controlled tensile testing”, Mater. Sei. Eng. A, vol. 337, pp. 194–201, 2002.CrossRefGoogle Scholar
  17. [17]
    P. Hähner, “On the velocity selection of propagating Portevin-Le Chatelier deformation bands during constant strain-rate and constant stress-rate testing”, unpublished.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Mohammed Abbadi
    • 1
  • David Thevenet
    • 2
  • Peter Hähner
    • 1
  • Abderrahim Zeghloul
    • 3
  1. 1.DG-Joint Research CentreEuropean Commission, Institute for EnergyZG PettenThe Netherlands
  2. 2.Mechanics of Naval and Offshore Structures LaboratoryENSIETABrest Cedex 9France
  3. 3.Laboratoire de Physique et de Mécanique des Matériaux, URA CNRS 1215ISGMPUniversité de MetzMetz Cedex 01France

Personalised recommendations