Skip to main content

Mutation and selection for improved oil and meal quality in Brassica napus utilizing microspore culture

  • Chapter

Part of the book series: Current Plant Science and Biotechnology in Agriculture ((PSBA,volume 24))

Abstract

Over the last 30 years the oil and fat industry has increased production threefold (>80 million tons), and this increase has come primarily from plant sources (Rattray, 1991). The isolation, development and production of specialty fats and oils have been targeted for various specific applications in the edible oil for salad/cooking, baking/frying, margarine/shortening and the inedible oleochemistry industry for plasticizers, lubricants, greases, etc. The food industry is responding to three primary market niches: 1) oils with increased oxidative stability and longer shelf life, 2) oils with improved health appeal, and 3) oils which meet the new FDA (Food and Drug Administration in U.S.A.) food labelling regulations (Mermelstein, 1993).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackman, R.G., 1990. Canola fatty acids — an ideal mixture for health, nutrition and food use. In: F. Shahidi (Ed.), Canola and Rapeseed: Production, Chemistry, Nutrition and Processing Technology, pp. 81–98. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Arcia, M.A., E.A. Wernsman and L.G. Burk, 1978. Performance of anther derived dihaploids and their conventionally inbred parents and lines in F1 hybrids and in F2 generations. Crop Sci. 18: 413–418.

    Article  Google Scholar 

  • Baillie, A., D. Hutcheson and W.A. Keller, 1992. In vitro culture of isolated microspores and regeneration of plants in Brassica campestris. Plant Cell Rep. 11: 235–237.

    Google Scholar 

  • Betts, K.J., D.L. Wyse, J.W. Gronwald and N.J. Ehlke, 1990. Inheritance of diclofop resistance in Italian ryegrass. Abstr. Weed Sci. Soc. Am. 30: 58.

    Google Scholar 

  • Beversdorf, W.D. and L.S. Kott, 1987. An in vitro mutagenesis/selection system for Brassica napus. Iowa State J. Res. 61: 435–443.

    Google Scholar 

  • Brunklaus-Jung, E. and G. Robbelen, 1987. Genetical and physiological investigations on mutants for polyenoic fatty acids in rapeseed (Brassica napus L.). III. Breeding behaviour and performance. Plant Breed. 98: 9–16.

    CAS  Google Scholar 

  • Chapple, C.C.S. and B.E. Ellis. 1992. Secondary metabolite profiles of crucifer seeds: biogenesis, role, and prospects for directed modification. In: B.K. Singh, H.E. Flores and J.C. Shannon (Eds.), Biosynthesis and Molecular Regulation of Amino Acids in Plants, pp. 239–248. Amer. Soc. Plant Physiologists.

    Google Scholar 

  • Charne, D.G., 1990. Comparative analyses of microspore-derived and conventional inbred populations of spring oilseed rape (Brassica napus L.). Ph.D. Thesis, Department of Crop Science, University of Guelph, Ontario.

    Google Scholar 

  • Chen, J.L. and W.D. Beversdorf, 1990a. A comparison of traditional and haploid-derived breeding population of oilseed rape (Brassica napus L.). Euphytica 51: 59–65.

    Article  CAS  Google Scholar 

  • Chen, J.L. and W.D. Beversdorf, 1990b. Fatty acid inheritance in microspore derived population of spring rapeseed (Brassica napus L.). Theor. Appl. Genet. 80: 465–469.

    CAS  Google Scholar 

  • Chen, J.L. and W.D. Beversdorf, 1991. Evaluation of microspore-derived embryos as models for studying lipid biosynthesis in seed of rapeseed (Brassica napus L.). Euphytica 58: 145155.

    Google Scholar 

  • Choo, T.M., E. Reinbergs and K.J. Kasha, 1985. Use of haploids in breeding barley. Plant Breed. Rev. 3: 219–252.

    Google Scholar 

  • Choo, T.M., E. Reinbergs and S.J. Park, 1982. Comparison of frequency distributions of doubled haploid and single seed descent lines in barley. Theor. Appl. Genet. 61: 214–218.

    Google Scholar 

  • Coventry, J., L. Kott and W.D. Beversdorf, 1988. Manual for microspore culture technique for Brassica napus. Department of Crop Science, OAC Publication 489, University of Guelph, Ontario.

    Google Scholar 

  • Deaton, D.R., P.D. Legg and G.B. Collins, 1982. A comparison of burley tobacco doubled haploid lines with their source inbred cultivars. Theor. Appl. Genet. 62: 69–74.

    Google Scholar 

  • Downey, R.K., 1983. The origin and description of the Brassica Oilseed Crops. In: J.K.G. Kramer, F.D. Sauer and W.J. Pigden (Eds.), High and Low Erucic Acid Rapeseed Oils, pp. 1–20. Academic Press, New York.

    Chapter  Google Scholar 

  • Eikenberry, E., 1993. Chromosome doubling of microspore-derived canola using trifluralin. In: Eighth Crucifer Genetics Workshop, July 21–24, 1993, Saskatoon, Saskatchewan, p. 84.

    Google Scholar 

  • Ferrie, A.M.R., D.J. Epp and W.A. Keller, 1993. Evaluation of Brassica campestris genotypes for microspore culture response. In: Eighth Crucifer Genetics Workshop, July 21–24, 1993, Saskatoon, Saskatchewan, p. 84.

    Google Scholar 

  • Goh, Y.K., A. Shires, A.R. Robblee and D.R. Clandinin, 1982. Effect of ammoniation of rapeseed meal on the sinapine content of the meal. Brit. Poult. Sci. 23: 121–128.

    Article  CAS  Google Scholar 

  • Gronwald, J.W., 1991. Lipid biosynthesis inhibitors. Weed Sci. 39: 435–449.

    CAS  Google Scholar 

  • Harwood, J.L., 1988. Fatty acid metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39: 101–138.

    Google Scholar 

  • Hawrysh, Z.J., 1990. Stability of canola oil. In: F. Shahidi (Ed.), Canola and Rapeseed: Production, Chemistry, Nutrition and Processing Technology, pp. 99–122. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Hoppe, H.H., 1989. Fatty acid biosynthesis–a target site of herbicide action. In: P. Boger and G. Sandemann (Eds.), Target Sites of Herbicide Action, pp. 65–83. CRC Press, Inc., Boca Raton, FL.

    Google Scholar 

  • James, D.W., Jr. and H.K. Dooner, 1990. Isolation of EMS-induced mutants in Arabidopsis altered in seed fatty acid composition. Theor. Appl. Genet. 80: 241–245.

    Article  CAS  Google Scholar 

  • Knutzon, D.S., G.A. Thompson, S.E. Radke, W.B. Johnson, V.C. Knauf and J.C. Kirdl, 1992. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proc. Natl. Acad. Sci. USA 89: 2624–2628.

    Article  PubMed  CAS  Google Scholar 

  • Kott, L.S., L.R. Erickson and W.D. Beversdorf, 1990. The role of biotechnology in canola/rapeseed research. In: F. Shahidi (Ed.,) Canola and Rapeseed: Production, Chemistry, Nutrition and Processing Technology, pp. 47–78. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Lemieux, B., M. Miguel, C. Somerville and J. Browse, 1990. Mutants of Arabidopsis with alterations in seed lipid fatty acid composition. Theor. Appl. Genet. 80: 234–240.

    Article  CAS  Google Scholar 

  • Lichter, R., 1982. Induction of haploid plants from isolated pollen of Brassica napus. Z. Planzenphysiol. 105: 427–434.

    Google Scholar 

  • Lichter, R., E. de Groot, D. Fiebig, R. Schweiger and A. Gland, 1988. Glucosinolates determined by HPLC in the seeds of microspore-derived homozygous lines of rapeseed (Brassica napus L.). Plant Breed. 100: 209–221.

    Article  CAS  Google Scholar 

  • McClellan, D., L.S. Kott, W.D. Beversdorf and B.E. Ellis, 1993. Glucosinolate metabolism in zygotic and microspore-derived embryos of Brassica napus L. Plant Physiol. 141: 153–159.

    Article  CAS  Google Scholar 

  • Mermelstein, N.H., 1993. Nutrition labelling in foodservice. Food Technology April 1993: 65–68.

    Google Scholar 

  • Polsoni, L., L.S. Kott and W.D. Beversdorf, 1988. Large scale microspore culture technique for mutation/selection studies in Brassica napus L. Can. J. Bot. 66: 1681–1685.

    Article  Google Scholar 

  • Pomeroy, M.K., J.K.G. Kramer, D.J. Hunt and W.A. Keller, 1991. Fatty acid changes during development of zygotic and microspore-derived embryos of Brassica napus. Physiol. Plant. 81: 447–454.

    Article  CAS  Google Scholar 

  • Rattray, J.B.M., 1991. Plant biotechnology and the oils and fats industry. In: James Rattray (Ed.), Biotechnology of Plant Fats and Oils. pp. 1–15. American Oil Chemists’ Society USA, Ill.

    Google Scholar 

  • Regenbrecht, J. and D. Strack, 1985. Distribution of 1-sinapoylglucose: Choline sinapoyltransferase activity in the Brassicaeae. Phytochemistry 24: 407–410.

    Article  CAS  Google Scholar 

  • Robbelen, B. and A. Nitsch, 1975. Genetical and physiological investigation on mutants for polyenoic fatty acids in rapeseed, Brassica napus L. Z. Pflanzenzüchtg. 75: 93–105.

    Google Scholar 

  • Shahidi, F., 1990a. North American Production of Canola. In: F. Shahidi (Ed.), Canola and Rapeseed: Production, Chemistry, Nutrition and Processing Technology, pp. 15–23. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Shahidi, F., 1990b. Rapeseed and Canola: Global Production Distribution. In: F. Shahidi (Ed.), Canola and Rapeseed: Production, Chemistry, Nutrition and Processing Technology, pp. 313. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Siebel, J. and K.P. Pauls, 1989a. Inheritance patterns of erucic acid content in populations of Brassica napus microspore-derived spontaneous diploids. Theor. Appl. Genet. 77: 489–494.

    Article  CAS  Google Scholar 

  • Siebel, J. and K.P. Pauls, 1989b. Alkenyl glucosinolate levels in androgenic populations of Brassica napus. Plant Breed. 103: 124–132.

    Article  CAS  Google Scholar 

  • Stefansson, B.R. and Z.P. Kondra. 1975. Tower Summer Rape. Can. J. Plant Sci. 55: 343–344.

    Article  Google Scholar 

  • Stringam, G.R., V.K. Bansal and M.R. Thiagarajah, 1993. Reaction of haploid sporophytes vs. doubled haploid seedlings to blackleg (Leptosphaeria maculans) in Brassica napus L. In: Eighth Crucifer Genetics Workshop, July 21–24, 1993, Saskatoon, Saskatchewan, p. 106.

    Google Scholar 

  • Swanson, E.B., M.P. Coumans, G.L. Brown, J.D. Patel and W.D. Beversdorf, 1988. The characterization of herbicide tolerant plants in Brassica napus L. after in vitro selection of microspores and protoplasts. Plant Cell Rep. 7: 83.

    Article  CAS  Google Scholar 

  • Swanson, E.B., M.P. Coumans, S.C. Wu, T.L. Barsby and W.D. Beversdorf, 1987. Efficient isolation of microspores and the production of microspore-derived embryos from Brassica napus. Plant Cell Rep. 6: 94–97.

    Google Scholar 

  • Swanson, E.S., M.J. Herrgesell, M. Arnoldo, D. Sippell and R.S.C. Wong, 1989. Microspore mutagenesis and selection: Canola plants with field tolerance to the imidazolinones. Theor. Appl. Genet. 78: 525–530.

    Article  CAS  Google Scholar 

  • Taylor, D.C., N. Weber, D.L. Barton, W.E. Underhill, L.R. Hogge, R.J. Weselake and M.K. Pomeroy, 1991. Triacylglycerol bioassembly in microspore-derived embryos of Brassica napus L. cv. Reston. Plant Physiol. 97: 65–79.

    Article  CAS  Google Scholar 

  • Taylor, D.C., N. Weber, L.R. Hogge, E.W. Underhill and M.K. Pomeroy, 1992. Formation of trierucoylglycerol (Trierucin) from 1,2-dierucoylglycerol by a homogenate of microspore-derived embryos of Brassica napus L. J. Am. Oil Chem. Soc. 69: 355–358.

    Article  CAS  Google Scholar 

  • Taylor, D.C., N. Weber, E.W. Underhill, M.K. Pomeroy, W.A. Keller, W.R. Scowcroft,R.W. Wilen, M.M. Moloney and L.A. Holbrook, 1990. Storage-protein regulation and lipid accumulation in microspore embryos of Brassica napus L. Planta 181: 18–26.

    CAS  Google Scholar 

  • Thiagarajah, M.R. and G.T. Stringham, 1993. A comparison of genetic segregation in traditional and microspore-derived populations of Brassica juncea L. Czern and Coss. Plant Breed. (in press).

    Google Scholar 

  • Turnham, E. and D.H. Northcote, 1983. Changes in the activity of acetyl-CoA carboxylase during rape seed formation. Biochem. J. 212: 223–229.

    PubMed  CAS  Google Scholar 

  • Wiberg, E., L. Rahlen, M. Hellman, E. Tillberg, K. Glimelius and S. Stymne, 1991. The microspore-derived embryo of Brassica napus as a tool for studying embryo-specific lipid biogenesis and regulation of oil quality. Theor. Appl. Genet. 82: 515–520.

    Article  CAS  Google Scholar 

  • Wong, R.S.-C., J. Patel, E. Swanson and I. Grant, 1991. Development of canola with novel fatty acid profile. In: J. Rattray (Ed.), Biotechnology of Plant Fats and Oils, pp. 144–150. American Oil Chemists’ Society USA, Ill.

    Google Scholar 

  • Wong, R.S.-C. and E. Swanson, 1991. Genetic modification of canola oil: high oleic acid canola. In: C. Haberstroh and C.E. Morris (Eds.), Fat and Cholesterol Reduced Foods: Technologies and Strategies, pp. 153–164. Portfolio Publ. Co. The Woodlands, TX.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kott, L., Wong, R., Swanson, E., Chen, J. (1996). Mutation and selection for improved oil and meal quality in Brassica napus utilizing microspore culture. In: Jain, S.M., Sopory, S.K., Veilleux, R.E. (eds) In Vitro Haploid Production in Higher Plants. Current Plant Science and Biotechnology in Agriculture, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0477-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0477-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4580-5

  • Online ISBN: 978-94-017-0477-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics