Skip to main content

Genetic transformation of wheat via pollen 25 Years of plant transformation attempts II

  • Chapter
In Vitro Haploid Production in Higher Plants

Part of the book series: Current Plant Science and Biotechnology in Agriculture ((PSBA,volume 24))

Abstract

Almost all gene transfer techniques except pollen-based methods require a plant regeneration system. Whether in vitro steps must be included in pollen-mediated transfer depends on the selectable marker genes, e.g., in vitro culture will not be required using anthocyanin markers (Hess, 1980). As another example, the hybrid Nicotiana glauca Ɨ N. langsdorffii is well-known for the formation of genetic tumors. To transfer the tumor gene ā€œIā€ from N. langsdorffii to N. glauca via pollen, N. glauca pollen cultures were treated with N. langsdorffii DNA, and pollen-derived plants were grown in soil. Tumor phenotype was screened by wounding the plants. Again, in vitro steps could be avoided by this approach (Hess, 1975; Hess et al., 1976).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alwen, A., N. Eller, M. Kastler, R. Benito Moreno, and E. Heberle-Bors, 1990. Potential of in vitro pollen maturation for gene transfer. Physiol. Plant. 79: 194ā€“196.

    ArticleĀ  Google ScholarĀ 

  • Balzer, H.-J., 1990. DNA-Methylierung in Weizen. Intemann, Prien am Chiemsee.

    Google ScholarĀ 

  • Becker, D., R. Brettschneider and H. Lƶrz, 1994. Fertile transgenic wheat from microprojectile bombardement of scutellar tissue. Plant J. 5: 299ā€“307.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Binder, S., 1994. Untersuchungen zur in vitro-Keimung von Tabak-und Weizenpollen. Diploma Thesis, Faculty of Biology, University of Hohenheim, Stuttgart.

    Google ScholarĀ 

  • Binns, A., and M. Tomashow, 1988. Cell biology of Agrobacterium infection and transformation of plants. Ann. Rev. Microbiol. 42: 575ā€“606.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Brettschneider, R., H. Lƶrz, and S. Stirn, 1993. In vitro Kultur und Gentransfer bei Getreide. BioEngineering 9: 31ā€“36.

    Google ScholarĀ 

  • Bytebier, B., F. Deboeck, H. Greve, M. Van Montagu, and J. Hernalsteens, 1987. T-DNA organization in tumor cultures and transgenic plants of the monocotyledon Asparagus officinales. Proc. Natl. Acad. Sci. USA 84: 5345ā€“5349.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Chan, M.-T., H.-H. Chang, S.-L. Ho, W.-F. Tong, and S.M. Yu, 1993. Agrobacterium-mediated production of transgenic rice plants expressing a chimeric a-amylase promoter/Ī²-glucuronidase gene. Plant Mol. Biol. 22: 491ā€“506.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Chan, M.-T., T-M. Lee, and H.-H. Chang, 1992. Transformation of Indica rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens. Plant Cell Physiol. 33: 577ā€“583.

    CASĀ  Google ScholarĀ 

  • Chen, D.F., P.J. Dale, J.S. Heslop-Harrison, J.W. Snape, W. Harwood, S. Bean, and P.M. Mullineaux, 1994. Stability of transgenes and presence of N6 methyladenine DNA in transformed wheat cells. Plant J. 5: 429ā€“436.

    ArticleĀ  Google ScholarĀ 

  • Dale, P., S. Marks, M. Brown, C. Woolstone, H. Gunn, P. Mullineaux, D. Lewis, J. Kemp, D. Chen, D. Gimour, and R. Flavell, 1989. Agroinfection of wheat: inoculation of in vitro grown seedlings and embryos. Plant Sci. 63: 237ā€“245.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • DeCleene, M., 1985. The suceptibility of monocotyledons to Agrobacterium tumefaciens. Phytopathol. Z. 113: 81ā€“89.

    ArticleĀ  Google ScholarĀ 

  • Domisse, E., D. Leung, M. Shaw, and A. Conner, 1990. Onion is a monocotyledonous host for Agrobacterium. Plant Sci. 69: 249ā€“334.

    ArticleĀ  Google ScholarĀ 

  • Flavell, R.B., S. Sardana, S. Jackson, and M. Oā€™Dell, 1990. The molecular basis of variation affecting gene expression: Evidence from studies of the ribosomal RNA gene loci of wheat. In: J.P. Gustafson (Ed.), Gene Manipulation in Plant Improvement II, pp. 419ā€“430. Plenum Press, New York.

    ChapterĀ  Google ScholarĀ 

  • Gould, J., M. Devey, O. Hasegawa, E. Ulian, G. Peterson, and R. Smith, 1991. Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol. 95: 426ā€“434.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Graves, A., and S. Goldman, 1986. The transformation of Zea mays seedlings with Agrobacterium tumefaciens. Plant Mol. Biol. 7: 43ā€“50.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Graves, A., and S. Goldman, 1987. Agrobacterium-mediated transformation of the monocot genus Gladiolus: Detection of expression of T-DNA encoded genes. J. Bacteriol. 169: 1745ā€“1746.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Grimsley, N., T. Hohn, J. Davis, and B. Hohn, 1987. Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 325: 177ā€“179.

    Google ScholarĀ 

  • Grimsley, N., C. Ramos, T. Hein, and B. Hohn, 1988. Meristematic tissues of maize plants are most suceptible to agroinfection with maize streak virus. Bio/Technology 6: 185ā€“189.

    ArticleĀ  Google ScholarĀ 

  • Grimsley, N., T. Hohn, C. Ramos, C. Kado, and P. Rogwosky, 1989. DNA transfer from Agrobacterium to Zea mays or Brassica by agroinfection is dependent on bacterial virulence functions. Mol. Gen. Genet. 217: 309ā€“316.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Hayes, R., H. MacDonald, R. Coutts, and K. Buck, 1988. Agroinfection of Triticum aestivum with cloned DNA of wheat dwarf virus. J. Gen. Virol. 69: 891ā€“986.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hernalsteens, J., L. Thia-Tong, J. Schell, and M. Van Montagu, 1984. An Agrobacterium-transformed cell culture from the monocot Asparagus officinales. EMBO J. 3: 3039ā€“3041.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Hess, D., 1975. Uptake of DNA and phage into pollen and genetic manipulation. In: L. Ledoux (Ed.), Genetic Manipulation with Plant Material, pp. 519ā€“537. Plenum Press, New York.

    Google ScholarĀ 

  • Hess, D., 1980. Investigations on the intra-and interspecific transfer of anthocyanin genes using pollen as vectors. Z. Pflanzenphysiol. 98: 321ā€“337.

    CASĀ  Google ScholarĀ 

  • Hess, D., 1981. Attempts to transfer kanamycin resistance of bacterial plasmid origin in Petunia hybrida using pollen as vectors. Biochem. Physiol. Pflanzen 176: 322ā€“328.

    Google ScholarĀ 

  • Hess, D., 1996. Genetic transformation of Petunia via pollen. In: S.M. Jain, S.K. Sapory and R.E. Veilleux (Eds.), In Vitro Production of Haploids in Higher Plants, pp. 373ā€“390. Kluwer Academic Publishers, Dordrecht.

    Google ScholarĀ 

  • Hess, D., G. Schneider, H. Lƶrz, and G. Blaich, 1976. Investigations on the tumor induction in Nicotiana glauca by pollen transfer of DNA isolated from Nicotiana langsdorffii. Z. Pflanzenphysiol. 77: 247ā€“254.

    CASĀ  Google ScholarĀ 

  • Hess, D., K. Dressler, and R. Nimmrichter, 1990. Transformation experiments pipetting Agrobacterium into the spikelets of wheat (Triticum aestivum L.). Plant Sci. 72: 233ā€“244.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hess, D., M. Iser, A. Schmid, S. Stegmaier, and K. Dressler, 1992. Pollen mediated indirect gene transfer to dicots and monocots. In: E. Ottaviano, D. Mulcahy, M. Sarli Gorla and G. Bergamini Mulcahy (Eds.), Angiosperm Pollen and Ovules, pp. 261ā€“273. Springer-Verlag, New York.

    ChapterĀ  Google ScholarĀ 

  • Hooykaas-Slogteren, G., P. Hooykaas, and R. Schilperoort, 1984. Expression of Ti-plasmid genes in monocotyledoneous plants infected with Agrobacterium tumefaciens. Nature 311: 763ā€“764.

    ArticleĀ  Google ScholarĀ 

  • Horsch, R., J. Fry, N. Hoffmann, D. Eichholtz, S. Rogers, and R. Fraley, 1985. A simple and general method for transferring genes into plants. Science 227: 1229ā€“1231.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • JƤhne, A., D. Becker, and H. Lƶrz, 1994. Regeneration of transgenic, microspore-derived, fertile barley. Theor. Appl. Genet. 89: 525ā€“533.

    ArticleĀ  Google ScholarĀ 

  • Janssen, B.-J., and R. Gardner, 1989. Localized transient expression of GUS in leaf disks following cocultivation with Agrobacterium. Plant Mol. Biol. 14: 61ā€“72.

    ArticleĀ  Google ScholarĀ 

  • Kappes, C., 1987. Induktion der vir-Region von Agrobacterium tumefaciens durch Faktoren aus pflanzenkonditionierten Medien. Diploma Thesis, Faculty of Biology, University of Hohenheim, Stuttgart.

    Google ScholarĀ 

  • Kay, R., A. Chan, M. Daly, and J. McPherson, 1987. Duplication of CaMV 35 S promoter sequences creates a strong enhancer for plant genes. Science 236: 1299ā€“1302.

    Google ScholarĀ 

  • Klein, T., E. Wolf, R. Wu, and J. Sanford, 1987. High velocity microprojectiles for delivering nucleic acids into living cells. Nature 327: 70ā€“73.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Langridge, P., R. Brettschneider, P. Lazzeri, and H. Lƶrz, 1992. Transformation of cereals via Agrobacterium and the pollen pathway: a critical assessment. Plant J. 2: 631ā€“638.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Maas, C., J. Laufs, S. Grant, C. Korfhage, and W. Werr, 1991. The combination of a novel stimulatory element in the first exon of the maize shrunken-1 gene with the following intron 1 enhances reporter gene expression up to 1000-fold. Plant Mol. Biol. 16: 199ā€“207.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Mascarenhas, J., 1992. Pollen expressed genes and their regulation. In: E. Ottaviano, D. Mulcahy, M. Sarli Gorla and G. Bergamini Mulcahy (Eds.), Angiosperm Pollen and Ovules, pp. 3ā€“5. Springer Verlag, New York.

    ChapterĀ  Google ScholarĀ 

  • Nehra, S., R. Chibbar, N. Leung, K. Caswell, C. Mallard, L. Steinhauer, M. Baga, and K. Kartha, 1994. Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs. Plant J. 5: 285ā€“297.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Paszkowski, J., R. Shillito, M. Saul, V. Mansdak, T. Hohn, B. Hohn, and I. Potrykus, 1984. Direct gene transfer to plants. EMBO J. 3: 2717ā€“2722.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Raineri, D., P. Bottino, M. Gordon, and E. Nester, 1990. Agrobacterium-mediated transformation of rice (Oryza sativa L.). Bio/Technology 8: 33ā€“38.

    Google ScholarĀ 

  • SchƤfer, W., A. Gƶrz, and G. Kahl, 1987. T-DNA integration and expression in a monocot crop plant after induction of Agrobacterium. Nature 327: 529ā€“532.

    ArticleĀ  Google ScholarĀ 

  • Stƶger, E., R. Benito Moreno, B. Ylstra, O. Vincente, and E. Heberle-Bors, 1992. Comparison of different techniques for gene transfer into mature and immature tobacco pollen. Transgen Res. 1: 71ā€“78.

    ArticleĀ  Google ScholarĀ 

  • Theiss, G., R. Schleicher, G. Schimpff-Weiland, and H. Follmann, 1987. DNA methylation in wheat. Eur. J. Biochem. 167: 89ā€“96.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Twell, D., T. Klein, M. Fromm, and S. McCormick, 1989. Transient expression of chimeric genes delivered into pollen by microprojectile bombardment. Plant Physiol. 91: 1270ā€“1274.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Usami, S., S. Okamoto, I. Takebe, and Y. Machida, 1988. Factor inducing Agrobacterium tumefaciens vir gene expression is present in monocotyledoneous plants. Proc. Natl. Acad. Sci. USA 85: 3748ā€“3752.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Vasil, I. 1993. Molecular genetic improvement of cereal and grass crops. Newslett. Int. Ass. Plant Tiss. Cult. 72: 2ā€“10.

    Google ScholarĀ 

  • Vasil, V., M. Clancy, R. Ferl, I. Vasil, and C. Hannah, 1989. Increased gene expression by the first intron of maize shrunken-1 locus in grass species. Plant Physiol. 91: 1575ā€“1579.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Vasil, V., F. Redway, and I. Vasil, 1990. Regeneration of plants from embryogenic suspension culture protoplasts of wheat ( Triticum aestivum ). Bio/Technology 8: 429ā€“434.

    ArticleĀ  Google ScholarĀ 

  • Vasil, V., A. Castillo, E. Fromm, and I. Vasil, 1992. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 10: 667ā€“674.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Vasil, V., V. Srivastava, A. Castillo, E. Fromm, and I. Vasil, 1993. Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Bio/Technology 11: 1554ā€“1558.

    ArticleĀ  Google ScholarĀ 

  • Viertel, K., and D. Hess, 1995. Shoot tips of wheat, as an alternative source for regenerable embryogenic callus cultures. Plant Cell Tiss. Org. Cult. (in press).

    Google ScholarĀ 

  • Viertel, K., M. Iser, A. Schmid, K. Dressler, and D. Hess, 1996. Agrobacterium-mediated gene transfer to wheat via pollen and shoot tips: Stable transformation versus epigenetic repression, rearrangement and disintegration of transgenes (submitted for publication).

    Google ScholarĀ 

  • Weeks, J., O. Anderson, and A. Blechl, 1993. Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol. 102: 1077ā€“1084.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Ylstra, B., A. Touraev, R. Moreno, E. Stƶger, A. van Tunen, O. Vincente, J. Mol, and E. Heberle-Bors, 1992. Flavonols stimulate development, germination, and tube growth of tobacco pollen. Plant Physiol. 100: 902ā€“907.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hess, D. (1996). Genetic transformation of wheat via pollen 25 Years of plant transformation attempts II . In: Jain, S.M., Sopory, S.K., Veilleux, R.E. (eds) In Vitro Haploid Production in Higher Plants. Current Plant Science and Biotechnology in Agriculture, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0477-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0477-9_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4580-5

  • Online ISBN: 978-94-017-0477-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics