Skip to main content

Statistical models for the detection of genes controlling quantitative trait loci expression

  • Chapter

Part of the book series: Current Plant Science and Biotechnology in Agriculture ((PSBA,volume 24))

Abstract

Many important traits in plant breeding exhibit continuous variation (yield, maturity, biotic and abiotic stress tolerance, etc.) and therefore are named metric, polygenic, or quantitative traits (QTs). The genetic principles underlying their inheritance are basically the same as those affecting Mendelian or qualitative traits, but since the segregation of the genes concerned cannot be followed individually, new methods and concepts had to be developed. Why cannot the segregation of genes involved in the variation of a QT in a population be followed individually? It is mainly due to two common wellaccepted aspects of the genetic control of QTs: a) “many” loci are involved, and b) the effect of the individual genes is “very small” compared to the environmental effects. Consequently, a branch of the science of Genetics concerned with quantitative traits emerged, i.e., Biometrical or Quantitative Genetics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asíns, M.J., P. Mestre, J.E. Garcia, F. Dicenta and E.A. Carbonell, 1994. Genotype x environment interaction in QTL analysis of an intervarietal almond cross by means of genetic markers. Theor. Appl. Genet. 89: 358–364.

    Google Scholar 

  • Assns, M.J. and E.A. Carbonell, 1988. Detection of linkage between restriction fragment length polymorphism markers and quantitative traits. Theor. Appl. Genet. 76: 623–626.

    Google Scholar 

  • Bajaj, Y.P.S., 1990. In vitro production of haploids and their use in cell genetics and plant breeding. In: Y.P.S. Bajaj (Ed.), Haploids in Crop Improvement, pp. 3–44. Springer-Verlag, Berlin.

    Google Scholar 

  • Beavis, W.D., D. Grant, M. Albertsen and R. Fincher, 1991. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor. Appl. Genet. 83: 113–120.

    Google Scholar 

  • Bradley, R.A. and D.E.W. Schumann, 1956. The comparison of sensitivities of similar experiments: Applications. Biometrics 13: 496–510.

    Google Scholar 

  • Bret6, M.P., M.J. Asins and E.A. Carbonell, 1994. Salt tolerance in Lycopersicon species. III. Detection of quantitative trait loci by means of molecular markers. Theor. Appl. Genet. 88: 395–401.

    Google Scholar 

  • Burr, B., F.A. Burr, K.H. Thompson, M.C. Albertson and C.W. Stuber, 1988. Gene mapping with recombinant inbreds in maize. Genetics 118: 519–526.

    PubMed  CAS  Google Scholar 

  • Carbonell, E.A., M.J. Asins, M. Baselga, E. Balansard and T.M. Gerig, 1993. Power studies in the estimation of genetic parameters and the localization of quantitative trait loci for backcross and doubled haploid population. Theor. Appl. Genet. 86: 411–416.

    Google Scholar 

  • Carbonell, E.A. and T.M. Gerig, 1991. A program to detect linkage between genetic markers and non-additive quantitative trait loci. J. Hered. 82: 435.

    PubMed  CAS  Google Scholar 

  • Carbonell, E.A., T.M. Gerig, E. Balansard and M.J. Asins, 1992. Interval mapping in the analysis of nonadditive quantitative trait loci. Biometrics 48: 305–315.

    Article  Google Scholar 

  • Cowen, N.M., 1988. The use of replicated progenies in marker based mapping of QTLs. Theor. Appl. Genet. 75: 857–862.

    Google Scholar 

  • Cowen, N.M., 1989. Multiple regression analysis of RFLP data sets in mapping QTLs. In: T. Helentjaris and B. Burr (Eds.), Development and Application of Molecular Markers to Problems in Plant Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Darvasi, A. and J.I. Weller, 1991. On the use of the moments method of estimation to obtain approximate maximum likelihood estimates of linkage between a genetic marker and a quantitative locus. Heredity 68: 43–46.

    Article  Google Scholar 

  • Dempster, A.P., N.M. Laird and D.B. Rubin, 1977. Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Series B 39: 1–38.

    Google Scholar 

  • Doebley, J. and A. Stec, 1993. Inheritance of morphological differences between maize and teosinte: comparison of results for two F2 populations. Genetics 134: 559–570.

    PubMed  CAS  Google Scholar 

  • Draper, N.R. and H. Smith, 1981. Applied Regression Analysis. Wiley, New York.

    Google Scholar 

  • Dudley, J.W., 1992. Theory for identification of marker locus-QTL associations in population by line crosses. Theor. Appl. Genet. 85: 101–104.

    Google Scholar 

  • Edwards, M.D., T. Helentjaris, S. Wright and C.W. Stuber, 1992. Molecular-marker-facilitated investigations of quantitative trait loci in maize. 4. Analysis based on genome saturation with isozyme and restriction endonuclease fragment length polymorphism markers. Theor. Appl. Genet. 83: 765–774.

    Google Scholar 

  • Edwards, M.D., C.W. Stuber and J.F. Wendel, 1987. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 116: 113–125.

    Google Scholar 

  • Falconer, D.S., 1989. Introduction to Quantitative Genetics. Longman, London.

    Google Scholar 

  • Frova, C. and M.S. Gorla, 1993. Quantitative expression of maize HSPs: genetic dissection and association with thermotolerance. Theor. Appl. Genet. 86: 213–220.

    Google Scholar 

  • Gelderman, H., 1975. Investigation on inheritance of quantitative characters in animals by gene markers. 1. Methods. Theor. Appl. Genet. 46: 319–330.

    Google Scholar 

  • Haley, C.S. and S.A. Knott, 1992. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69: 315–324.

    Article  PubMed  CAS  Google Scholar 

  • Haley, C.S., S.A. Knott and J.M. Eisen, 1994. Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics 136: 1195–1207.

    PubMed  CAS  Google Scholar 

  • Humphreys, M.O., 1992. Association of agronomic traits with isozyme loci in perennial ryegrass (Lolium perenne L.). Euphytica 141: 141–150.

    Article  Google Scholar 

  • Hyne, G. and J.W. Snape, 1991. Mapping quantitative trait loci for yield in wheat. In: J. Pesek (Ed.), Proc. 8th Meet. Eucarpia Section. Biometrics Plant Breed. Research Institute of Agroecology and Soil Management, pp. 47–56, Brno.

    Google Scholar 

  • Jansen, R.C., 1992. A general mixture model for mapping quantitative trait loci by using molecular markers. Theor. Appl. Genet 85: 252–260.

    Google Scholar 

  • Jansen, R.C., 1993. Interval mapping of multiple quantitative trait loci. Genetics 135: 205–211. Jansen, R.C. and P. Stam, 1994. High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136: 1447–1455.

    Google Scholar 

  • Jensen, J., 1989. Estimation of recombination parameters between a quantitative trait locus (QTL) and two marker gene loci. Theor. Appl. Genet. 78: 613–618.

    Google Scholar 

  • Kahler, A.L. and C.F. Wehrhahn, 1986. Association between quantitative traits and enzyme loci in the F2 population of a maize hybrid. Theor. Appl. Genet. 121: 185–199.

    Google Scholar 

  • Knapp, S.J., 1991. Using molecular markers to map multiple quantitative trait loci: models for backcross, recombinant inbred and doubled haploid progeny. Theor. Appl. Genet. 81: 333–338.

    Google Scholar 

  • Knapp, S.J., W.C. Bridges and D. Birkes, 1990. Mapping quantitative trait loci using molecular marker linkage maps. Theor. Appl. Genet. 79: 583–592.

    Google Scholar 

  • Knott, S.A. and C.S. Haley, 1992. Aspects of maximum likelihood methods for the mapping of quantitative trait loci in line crosses. Genet. Res. Camb. 60: 139–151.

    Google Scholar 

  • Lander, E.S. and D. Botsein, 1986. Strategies for studying heterogeneous genetic traits in humans by using a linkage map of restriction fragment length polymorphisms. Proc. Natl. Acad. Sci. USA 83: 7353–7357.

    Google Scholar 

  • Lander, E.S. and D. Botsein, 1989. Mapping mendelian factors underlying quantitative traits using RFLPs linkage maps. Genetics 121: 185–199.

    PubMed  CAS  Google Scholar 

  • Luo, Z.W. and M.J. Kearsey, 1989. Maximum likelihood estimation of linkage between a marker gene and a quantitative locus. Heredity 63: 401–408.

    Article  PubMed  Google Scholar 

  • Luo, Z.W. and M.J. Kearsey, 1991. Maximum likelihood estimation of linkage between a marker gene and a quantitative trait locus. II. Application to backcross and doubled haploid populations. Heredity 66: 117–124.

    Google Scholar 

  • Mansur, L.M., K.G. Lark, H. Kross and A. Oliveira, 1993. Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Theor. Appl. Genet. 86: 907–913.

    Google Scholar 

  • Martin, B., J. Nienhius, G. King and A. Schaefer, 1989. Restriction fragment length polymorphism associated to water usage efficiency in tomato. Science 243: 1725–1728.

    Article  PubMed  CAS  Google Scholar 

  • Martinez, O. and R.N. Curnow, 1992. Estimating the location and the sizes of the effects of quantitative trait loci using flanking markers. Theor. Appl. Genet. 85: 480–485.

    Google Scholar 

  • McCullagh, P. and J.A. Nelder, 1989. Generalized Linear Models. Monographs on Statistics and Applied Probability, 37. Chapman and Hall, London.

    Google Scholar 

  • Moreno-González, J., 1992a. Estimates of marker-associated QTL effects in Monte Carlo backcross generations using multiple regression. Theor. Appl. Genet. 85: 423–434.

    Google Scholar 

  • Moreno-González, J., 1992b. Genetic models to estimate additive and non-additive effects of marker-associated QTL using multiple regression techniques. Theor. Appl. Genet. 85: 435–444.

    Google Scholar 

  • Moreno-Gonzalez, J., 1993. Efficiency of generations for estimating marker-associated QTL effects by multiple regression. Genetics 135: 223–231.

    PubMed  CAS  Google Scholar 

  • Nienhius, J., T. Helentjaris, M. Slocum, B. Ruggero and A. Schaefer, 1987. Restriction fragment length polymorphism analysis of loci associated with insect resistance in tomato. Crop Sci. 27: 797–803.

    Article  Google Scholar 

  • Ooijen, J.W. van, 1992. Accuracy of mapping quantitative trait loci in autogamous species. Theor. Appl. Genet. 84: 803–811.

    Google Scholar 

  • Osborn, T.C., D.C. Alexander and I.F. Fobes, 1987. Identification of restriction fragment length polymorphism linked to genes controlling soluble solids content in tomato fruit. Theor. Appl. Genet. 73: 350–356.

    Google Scholar 

  • Paterson, A.H., S. Damon, J.D. Hewitt, D. Zamir, H.D. Rabinowich, S.E. Lincoln, E.S. Lander and S.D. Tanksley, 1991. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations and environments. Genetics 127: 181–197.

    PubMed  CAS  Google Scholar 

  • Paterson, A.H., E.S. Lander, J.D. Hewitt, S. Peterson, S.E. Lincoln and S.D. Tanksley, 1988. Resolution of quantitative traits into mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335: 721–726.

    Article  PubMed  CAS  Google Scholar 

  • Plaschke, J., A. Börner, D. X. Xie, M.D. Koebner, R. Schlegel and M.D. Gale, 1993. RFLP mapping of genes affecting plant height and growth habit in rye. Theor. Appt Genet. 85: 1049–1054.

    Google Scholar 

  • Rebai, A., B. Goffinet and B. Mangin, 1995. Comparing power of different methods for QTL detection. Biometrics 51: 87–99.

    Article  PubMed  CAS  Google Scholar 

  • Rodolphe, F. and M. Lefort, 1993. A multi-marker model for detecting chromosomal segments displaying QTL activity. Genetics 134: 1277–1288.

    PubMed  CAS  Google Scholar 

  • Romero-Severson, J., J. Lotzer, C. Brown and M. Murray, 1989. Use of RFLPs for analysis of quantitative trait loci in maize. In: T. Helentjaris and B. Burr (Eds.), Development and Applications of Molecular Markers to Problems in Plant Genetics, pp. 97–102. Cold Spring Harbor Laboratory, Cold Spring Harbor.

    Google Scholar 

  • Sax, K., 1923. The association of size differences with seed coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8: 552–560.

    PubMed  CAS  Google Scholar 

  • Simpson, S.P., 1989. Detection of linkage between quantitative trait loci and restriction fragment length polymorphisms using inbred lines. Theor. Appl. Genet. 77: 815–819.

    Google Scholar 

  • Simpson, S.P., 1992. Correction: Detection of linkage between quantitative trait loci and restric tion fragment length polymorphism using inbred lines. Theor. Appt Genet. 85: 110–111.

    Google Scholar 

  • Soller, M. and J.S. Beckmann, 1983. Genetic polymorphism in varietal identification and genetic improvement. Theor. Appl. Genet. 67: 25–33.

    Google Scholar 

  • Soller, M. and J.S. Beckmann, 1990. Marker-based mapping of quantitative trait loci using replicated progenies. Theor. Appl. Genet. 80: 205–208.

    Google Scholar 

  • Soller, M., T. Brody and A. Genizi, 1976. On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor. Appl. Genet. 47: 35–39.

    Google Scholar 

  • Stuber, C.W., M.D. Edwards and J.F. Wendel, 1987. Molecular marker-facilitated investigations of quantitative trait loci. II. Factors influencing yield and its component traits. Crop Sci. 27: 639–648.

    Google Scholar 

  • Tan, W.Y. and W.C. Chang, 1970. Some comparisons of the method of moments and the method of maximum likelihood in estimating parameters of a mixture of two normal densities. J. Am. Stat. Assoc. 67: 702–708.

    Google Scholar 

  • Tanksley, S.D. and J. Hewitt, 1988. Use of molecular markers in breeding for soluble solids content in tomato - a reexamination. Theor. Appl. Genet. 75: 811–823.

    Google Scholar 

  • Tanksley, S.D., H. Medina-Filho and C.M. Rick, 1982. Use of naturally-occurring enzyme variation to detect and map genes controlling quantitative traits in an interspecific backcross of tomato. Heredity 49: 11–25.

    Article  Google Scholar 

  • Thoday, J.M., 1961. Location of polygenes. Nature 191: 368–370.

    Article  Google Scholar 

  • Tingey, S.V. and J.P. Tufo, 1993. Genetic analysis with random amplified polymorphic DNA markers. Plant Physiol. 101: 349–352.

    Article  PubMed  CAS  Google Scholar 

  • Vallejos, C.E. and S.D. Tanksley, 1983. Segregation of isozyme markers and cold tolerance in an interspecific backcross of tomato. Theor. Appl. Genet. 66: 241–247.

    Google Scholar 

  • Vicente, M.C. de and S.D. Tanksley, 1993. QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134: 585–596.

    Google Scholar 

  • Weller, J.I., 1986. Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers. Biometrics 42: 627–640.

    Article  PubMed  CAS  Google Scholar 

  • Weller, J.I., 1987. Mapping and analysis of quantitative trait loci in Lycopersicon (tomato) with the aid of genetic markers using approximate maximum likelihood methods. Heredity 59: 413–421.

    Article  Google Scholar 

  • Weller, J.I., M. Soller and T. Brody, 1988. Linkage analysis of quantitative traits in an interspecific cross of tomato (Lycopersicon esculentum x Lycopersicon pimpinellifolium) by means of genetic markers. Genetics 118: 329–339.

    PubMed  CAS  Google Scholar 

  • Weller, J.I. and A. Wyler, 1992. Power of different sampling strategies to detect trait loci variance effects. Theor. Appl. Genet. 83: 582–588.

    Google Scholar 

  • Welsh, J. and M. McClelland, 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18: 7213–7218.

    Article  PubMed  CAS  Google Scholar 

  • Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafaiski and S.V. Tingey, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Res. 18: 6531–6535.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, Z.B., 1993. Theoretical basis of precision mapping of quantitative trait loci. Proc. Natl. Acad. Sci. USA 90: 10972–10976.

    Google Scholar 

  • Zeng, Z. B., 1994. Precision mapping of quantitative trait loci. Genetics 136: 1457–1468.

    PubMed  CAS  Google Scholar 

  • Zhuchenko, A.A., A.B. Korol and V.K. Andyushchenko, 1979. Linkage between loci of quantitative characters and marker loci. Genetika 14: 771–778.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Carbonell, E.A., Asíns, M.J. (1996). Statistical models for the detection of genes controlling quantitative trait loci expression. In: Jain, S.M., Sopory, S.K., Veilleux, R.E. (eds) In Vitro Haploid Production in Higher Plants. Current Plant Science and Biotechnology in Agriculture, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0477-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0477-9_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4580-5

  • Online ISBN: 978-94-017-0477-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics