Advertisement

Semantics and the Liar Paradox

  • Albert Visser
Chapter
Part of the Handbook of Philosophical Logic book series (HALO, volume 11)

Abstract

The semantical paradoxes are not a scientific subject like Inductive Definitions, Algebraic Geometry or Plasma Physics. At least not yet. On the other hand the paradoxes exert a strong fascination and many a philosopher or logician has spent some thought on them, mostly in relative isolation. The literature on the paradoxes is vast but scattered, repetitive and disconnected. This made it impossible to give a presentation in which all ideas in the literature receive their due.

Keywords

Philosophical Logic Truth Predicate Meaningful Sentence Revision Theory Liar Paradox 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [Aczel and Feferman, 1980]
    Peter Aczel and Sol Feferman. Consistency of the unrestricted abstraction principle using an intensional equivalence operator. In J.P. Seldin and J.R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 67–98. Academic Press, New York, 1980.Google Scholar
  2. Aczel et al.,1991] P. Aczel, P. Carlisle, and N. Mendier. Two frameworks of theories and their implementation in isabelle. In G. M. Plotkin et al., editors, Logical Frameworks,pages 5–39. Cambridge University Press, Cambridge, 1991.Google Scholar
  3. [Aczel, 1977a]
    P. Aczel. The strength of Martin-Löf’s intuitionistic type theory with one universe. In S. Mietissen and J. Vaänänen, editors, Proceedings of the Symposiums in Mathematical Logic in Oulu 1974 and Helsinki 1975, pages 1–32. Report no. 2, Dept.of Philosophy, University of Helsinki, 1977.Google Scholar
  4. [Aczel, 1977b]
    Peter Aczel. An introduction to inductive definitions. In Jon Barwise, editor, Handbook of Mathematical Logic, pages 739–782. North Holland, Amsterdam, 1977.Google Scholar
  5. Aczel, 1980] Peter Aczel. Frege structures and the notions of proposition, truth and set. In Jon Barwise et al., editors, The Kleene Symposium,pages 31–59. North Holland, Amsterdam, 1980.Google Scholar
  6. [Akama, 1996]
    S. Akama. Curry’s Paradox in contractionless constructive logic. Journal of Philosophical Logic, 25: 135–150, 1996.Google Scholar
  7. [Antonelli, 1994a]
    Aldo Antonelli. A Revision-Theoretic Analysis of the Arithmetical Hierarchy. Notre Dame Journal of Formal Logic, 35: 204–218, 1994.Google Scholar
  8. [Antonelli, 1994b]
    Aldo Antonelli. The complexity of revision. Notre Dame Journal of Formal Logic, 35:67–72, 1994. A correction appears in Antonelli’s ms. The Complexity of Revision, revised Google Scholar
  9. [Antonelli, 1994c]
    Aldo Antonelli. Non-well-founded sets via revision rules. Journal of Philosophical Logic, 23: 633–679, 1994.Google Scholar
  10. [Apostoli, 2000]
    Peter Apostoli. The analytic conception of truth and the foundations of arithmetic. Journal of Symbolic Logic, 65: 33–102, 2000.Google Scholar
  11. [Aqvist, 1982]
    L. Aqvist. Modal logic and quantified sentences. Theoretical Linguistics, 9: 111–129, 1982.Google Scholar
  12. [Ardeshir and Ruitenburg, 1998]
    Mohammad Ardeshir and Wim Ruitenburg. Basic Propositional calculus i. Mathematical Logic Quarterly, 44: 317–343, 1998.Google Scholar
  13. [Asher and Kamp, 1986]
    Nicholas Asher and Hans Kamp. The knower’s paradox and representational theories of attitudes. In J. Halpern, editor, TARK’86, pages 131–148. Morgan-Kaufman, Los Angeles, 1986.Google Scholar
  14. [Asher and Kamp, 1989]
    Nicholas Asher and Hans Kamp. Self-reference, attitudes, and paradox. In Gennaro Chierchia, Barbara H. Partee, and Raymond Turner, editors, Properties, Types and Meaning, volume 1, pages 85–118. Kluwer, Dordrecht, 1989.Google Scholar
  15. [Azzoudi, 1991]
    J. Azzoudi. A simple axiomatizable theory of truth. Notre Dame Journal of Formal Logic,32:458–493, 1991.Google Scholar
  16. [Barwise and Etchemendy, 1987]
    Jon Barwise and J. Etchemendy. The liar: an essay on truth and circularity. Oxford University Press, Oxford, 1987.Google Scholar
  17. [Barwise and Moss, 1996]
    Jon Barwise and L. Moss. Vicious Circles. On the Mathematics of NonWellfounded Phenomena. CSLI Publications, Stanford, 1996.Google Scholar
  18. [Barwise and others, 1980]
    Jon Barwise et al. The Kleene Symposium. North Holland, Amsterdam, 1980.Google Scholar
  19. [Barwise, 1977]
    Jon Barwise. Handbook of Mathematical Logic. North Holland, Amsterdam, 1977.Google Scholar
  20. [Bealer and Mönnich, 1989]
    G. Bealer and U. Mönnich. Property theories. In Dov Gabbay and Franz Günthner, editors, Handbook of Philosophical Logic, volume IV, pages 133–251. Reidel, Dordrecht, 1989.Google Scholar
  21. [Bealer, 1982]
    George Bealer. Quality and Concept. Clarendon Press, Oxford, 1982.Google Scholar
  22. [Bealer, 1994]
    G. Bealer. Property theory: the type-free approach vs. the church approach. Journal of Philosophical Logic, 23: 139–171, 1994.Google Scholar
  23. [Behman, 1931]
    H. Behman. Zu den Widersprüchen der Logik und der Mengenlehre. Jahresbericht der Deutschen Mathematiker-Vereiningung, 40: 37–48, 1931.Google Scholar
  24. [Belnap and Gupta, 1993a]
    Nuel Belnap and Anil Gupta. The Revision Theory of Truth. MIT Press, Cambridge, 1993.Google Scholar
  25. [Belnap and Gupta, 1993b]
    Nuel Belnap and Anil Gupta. The Revision Theory of Truth. MIT Press, Cambridge, 1993.Google Scholar
  26. [Belnap, 1982]
    Nuel Belnap. Gupta’s rule of revision theory of truth. Journal of Philosophical Logic, 11: 103–116, 1982.Google Scholar
  27. [Belnap, 1993]
    Nuel Belnap. On rigorous definitions. Philosophical Studies, 72: 115–146, 1993.Google Scholar
  28. [Benacerraf and Putnam, 1964]
    P. Benacerraf and H. Putnam, editors. Philosophy of Mathematics. Prentice Hall, 1964.Google Scholar
  29. [Benthem, 1978]
    J. van Benthem. Four paradoxes. Journal of Philosophical Logic, 7: 49–72, 1978.Google Scholar
  30. [Bernardi and D’Agostino, 1997]
    C. Bernardi and G. D’Agostino. Translating the hypergame paradox: remarks on the set of founded elements of a relation. Journal of Philosophical Logic, 25: 545–557, 1997.Google Scholar
  31. [Blarney, 1986]
    Stephen Blarney. Partial Logic. In Dov Gabbay and Franz Günthner, editors, Handbook of Philosophical Logic, volume III, pages 1–70. Reidel, Dordrecht, 1986.Google Scholar
  32. [Blau, 1983]
    Ulrich Blau. Vom Henker, vom Lügner and von ihrem Ende. Erkenntnis, 19: 27–44, 1983.Google Scholar
  33. [Blau, 1985]
    Ulrich Blau. Die Logik der Unbestimmheiten and Paradoxien. Erkenntnis, 22: 369–459, 1985.Google Scholar
  34. [Bochenski, 1961]
    I.M. Bocheàski. A History of Formal Logic. Chelsea, New York, 1961.Google Scholar
  35. [Bochvar, 1981]
    D.A. Bochvar. On a three-valued logical calculus and its application to the analysis of the classical extended functional calculus. History and Philosophy of Logic,2:87–112, 1981. English translation of the original article.Google Scholar
  36. [Bonevac, 1990]
    D. Bonevac. Paradoxes of fulfillment. Journal of Philosophical Logic, 19: 229–252, 1990.Google Scholar
  37. [Boolos, 1990]
    G. Boolos. The consistency of Frege’s Foundations of Arithmetic. In J. J. Thompson, editor, On Being and Saying: Essays in honour of Richard Cartwright, pages 3–20. MIT Press, Cambridge, Mass, 1990. Reprinted in [Demopoulos, 1995, pp. 211–233] and in [Boolos, 1998, 183–2011.Google Scholar
  38. [Boolos, 1993]
    G. Boolos. The Logic of Provability. Cambridge University Press, Cambridge, 1993.Google Scholar
  39. [Boolos, 1998]
    G. Boolos. Logic, Logic and Logic. Harvard University Press, Cambridge, Mass, 1998.Google Scholar
  40. Boyd et al.,1969] R. Boyd, G. Hensel, and H. Putnam. A recursion-theoretic characterization of the ramified analytical hierarchy. Transactions of the American Mathematical Society,141/142:37–62, 1969.Google Scholar
  41. [Brady, 1971]
    A. T. Brady. The consistency of the axioms of abstraction and extensionality in a three-valued logic. Notre Dame Journal of Formal Logic, 12: 447–452, 1971.Google Scholar
  42. [Bunder, 1980]
    M. W. Bunder. The naturalness of illative combinatory logic as a basis for mathematics. In J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 55–64. Academic Press, New York, 1980.Google Scholar
  43. [Bunder, 1983]
    M. Bunder. The simple consistency of a set theory based on the logic CSQ. Notre Dame Journal of Formal Logic, 24: 431–449, 1983.Google Scholar
  44. [Burge, 1979]
    Tyler Burge. Semantical paradox. Journal of Philosophy,76:83–118, 1979. Reprinted in [Martin, 1984, pp. 83–118].Google Scholar
  45. [Burge, 1982]
    Tyler Burge. The liar paradox: tangles and chains. Philosophical Studies, 41: 352–366, 1982.Google Scholar
  46. [Burge, 1984]
    Tyler Burge. Epistemic paradox. Journal of Philosophy, 81: 5–29, 1984.Google Scholar
  47. [Burgess, 1986]
    John Burgess. The Truth Is Never Simple. Journal of Symbolic Logic, 51: 663–681, 1986.Google Scholar
  48. [Burgess, 1988]
    John Burgess. Addendum to The truth is never simple’. Journal of Symbolic Logic, 53: 390–392, 1988.Google Scholar
  49. [Cain and Damnjanovic, 1991]
    James Cain and Zlatan Damnjanovic. On the weak Kleene scheme in Kripke’s theory of truth. Journal of Symbolic Logic, 56: 1452–1468, 1991.Google Scholar
  50. [Cantini, 1980]
    Andrea Cantini. A note on three-valued logic and tarski theorem on truth definitions. Studia Logica, 39: 405–415, 1980.Google Scholar
  51. [Cantini, 1981]
    Andrea Cantini. Tarski extensions of theories. In S. Bernini, editor, Atti del Congresso Nazionale di Logica, Montecatini Tenne, 1–5 Ottobre 1979, pages 219–237. Bibliopolis, Napoli, 1981.Google Scholar
  52. [Cantini, 1989]
    Andrea Cantini. Notes on Formal Theories of Truth. Zeitschrift fir mathematische Logik and Grundlagen der Mathematik, 35: 97–130, 1989.Google Scholar
  53. [Cantini, 1990]
    Andrea Cantini. A Theory of Truth Formally Equivalent to ID’. Journal of Symbolic Logic, 55: 244–259, 1990.Google Scholar
  54. [Cantini, 1993]
    Andrea Cantini. Extending the first-order theory of combinators with self-referential truth. Journal of Symbolic Logic, 58: 477–513, 1993.Google Scholar
  55. [Cantini, 1996]
    Andrea Cantini. Logical Frameworks for Truth and Abstraction. An Axiomatic Study, volume 135 of Studies in Logic and the Foundations of Mathematics. Elsevier, Amsterdam, 1996.Google Scholar
  56. [Cargile, 1979]
    J. Cargile. Paradoxes: a study in form and predication. Cambridge University Press, Cambridge, 1979.Google Scholar
  57. [Chaitin, 1979]
    G. Chaitin. Berry’s paradox. Communications of ACM, 31: 20–29, 1979.Google Scholar
  58. [Chang, 1963]
    C. C. Chang. The axiom of comprehension in infinite-valued logic. Mathematica Scandinava, 13: 19–39, 1963.Google Scholar
  59. [Chang, 1965]
    C. C. Chang. Infinite-valued logic as a basis for set theory. In Y. Bar Hillel, editor, Logic, Methodology und Philosophy of Science: Proceedings of the 1964 International Congress, pages 93–100. North Holland, Amsterdam, 1965.Google Scholar
  60. [Chapuis and Gupta, 1999]
    André Chapuis and Anil Gupta. Circularity, Definition, and Truth. Indian Council of Philosophical Research, 1999.Google Scholar
  61. [Chapuis, 1996]
    André Chapuis. Alternative revision theories of truth. Journal of Philosophical Logic, 25: 399–423, 1996.Google Scholar
  62. [Chapuis, 1998]
    André Chapuis. Recent theories of truth. Journal of Indian Council of Philosophical Research, 15: 89–123, 1998.Google Scholar
  63. [Chapuis, 1999]
    André Chapuis. Rationality and circularity. In André Chapuis and Anil Gupta, editors, Circularity, Definition, and Truth. Indian Council of Philosophical Research, New Delhi, 1999.Google Scholar
  64. [Chauvin, 1979]
    A. Chauvin. Theory of objects and set theory: introduction and semantics. Notre Dame Journal of Formal Logic, 20: 37–54, 1979.Google Scholar
  65. [Chierchia and Turner, 1988]
    G. Chierchia and R. Turner. Semantics and property theory. Linguistics und Philosophy, 11: 261–302, 1988.Google Scholar
  66. Chierchia et al.,1989] G. Chierchia, B. H. Partee, and R. Turner. Properties, types and meaning, vol. 1,volume 38 of Studies in Linguistics and Philosophy. Kluwer, 1989.Google Scholar
  67. [Chihara, 1973]
    C.H. Chihara. Ontology and the Vicious Circle Principle. Cornell University Press, 1973.Google Scholar
  68. [Chihara, 1979]
    C.H. Chihara. The semantic paradoxes; a diagnostic investigation. Philosophical Review, 88: 590–618, 1979.Google Scholar
  69. [Chihara, 1980]
    C.H. Chihara. Language and Negation. Joseph Publishing Company, 1980.Google Scholar
  70. [Chihara, 1984]
    C.H. Chihara. Priest, the Liar and Gödel. Journal of Philosophical Logic, 13: 117124, 1984.Google Scholar
  71. [Chung, 1989]
    I. Chung. A study in paradoxes. PhD thesis, University of Minnesota, 1989.Google Scholar
  72. Alonzo Church. Comparison of Russell’s resolution of the semantical antinomies with that of Tarski. Journal of Symbolic Logic, 41: 747–760, 1976.Google Scholar
  73. [Cocchiarella, 1973]
    N. Cocchiarella. Whither Russell’s paradox of predication? In M. Munitz, editor, Logic and Ontology, pages 133–158. New York University Press, New York, 1973.Google Scholar
  74. [Cocchiarella, 1986]
    N. Cocchiarella. Logical Investigations of Predication Theory and the Problem of Universals. Bibliopolis, Naples, 1986.Google Scholar
  75. [Cocchiarella, 1992]
    N. Cocchiarella. Cantor’s power-set theorem versus Frege’s double-correlation thesis. History and Philosophy of Logic, 13: 179–201, 1992.Google Scholar
  76. Curry et al.,1958] H. B. Curry, R. Feys, and W. Craig. Combinatory Logic,volume I. North Holland, 1958.Google Scholar
  77. [David, 1994]
    Marian David. Correspondence and Disquotation: An Essay on the Nature of Truth. Oxford University Press, 1994.Google Scholar
  78. [Davidson, 1999]
    Donald Davidson. On saying that. In D. Davidson and J. Hintikka, editors, Words and Objections, Essays on the Work of W. V. Quitte, pages 158–174. Reidel, Dordrecht, 1999.Google Scholar
  79. [Davies, 1991]
    N. Davies. A first-order theory of truth, knowledge and belief. In J. van Eijck, editor, Logic in AI, pages 170–179. Springer, Berlin, 1991.Google Scholar
  80. [Demopoulos, 1995]
    W. Demopoulos. Frege’s Philosophy of Mathematics. Harvard University Press, Harvard, 1995.Google Scholar
  81. [DeVidi and Solomon, 1999]
    David DeVidi and Graham Solomon. Tarski on “essentially richer” metalanguages. Journal of Philosophical Logic, 28: 1–28, 1999.Google Scholar
  82. [Dowden, 1979]
    B. H. Dowden. The Liar Paradox and Tarski’s Undefnability Theorem. PhD thesis, Stanford University, 1979.Google Scholar
  83. [Dowden, 1984]
    B. H. Dowden. Accepting inconsistencies from the paradoxes. Journal of Philosophical Logic, 13: 125–130, 1984.Google Scholar
  84. [Epstein, 1992]
    R. Epstein. A theory of truth based on a medieval solution of the liar paradox. History and Philosophy of Logic, 13: 144–177, 1992.Google Scholar
  85. [Feferman, 1969]
    Solomon Feferman. Set-theoretical foundations on category theory. In S. MacLane, editor, Reports of the Midwest Category Seminar, III,volume 106 of Lecture Notes in Mathematics,pages 201–247. Springer, Berlin, 1969. with an appendix by G. Kreisel.Google Scholar
  86. [Feferman, 1974]
    Solomon Feferman. Non-extensional type-free theories of partial operations and classifications i. In J. Diller and G. H. Müller, editors, Proof Theory Symposium, Kiel 1974, volume 500 of Springer Lecture Notes, pages 73–118. Springer, Berlin, 1974.Google Scholar
  87. [Feferman, 1975]
    Solomon Feferman. A language and axioms for explicit mathematics. In J.N. Crossley, editor, Algebra and Logic, volume 450 of Lecture Notes in Mathematics, pages 87–139. Springer, Berlin, 1975.Google Scholar
  88. [Feferman, 1977]
    Solomon Feferman. Categorical foundations and foundations for category theory. In R. Butts and J. Hintikka, editors, Logic, Foundations of Mathematics and Computability, pages 149–169. Reidel, Dordrecht, 1977.Google Scholar
  89. [Feferman, 1979]
    Solomon Feferman. Constructive theories of functions and classes. In M. Boffa, D. van Dalen, and K. McAloon, editors, Logic Colloquium 1978, Lecture Notes in Mathematics, pages 159–224. North Holland, Amsterdam, 1979.Google Scholar
  90. [Feferman, 1984]
    Solomon Feferman. Towards useful type-free theories. Journal of Symbolic Logic,49:75–111, 1984. Reprinted in [Martin, 1984, pp. 237–288].Google Scholar
  91. [Feferman, 1991]
    Solomon Feferman. Reflecting on Incompleteness. Journal of Symbolic Logic, 56: 1–49, 1991.Google Scholar
  92. [Field, 1972] Hartry Field. Tarski’s Theory of Truth. Journal of Philosophy, 69:347-375, 1972. [Field, 1986]
    Hartry Field. The deflationary conception of truth. In G. MacDonald and C. Wright, editors, Fact, Science and Morality, pages 55–117. Blackwell, Oxford, 1986.Google Scholar
  93. [Fine and McCarthy, 1984]
    Kit Fine and Timothy McCarthy. Truth without satisfaction. Journal of Philosophical Logic, 13: 397–421, 1984.Google Scholar
  94. [Finsler, 1975]
    P. Finsler. Aufsätze zur Mengenlehre. Wissenschaftliche Buchgesellschaft, 1975.Google Scholar
  95. [Fitch, 1948]
    F. B. Fitch. An extension of basic logic. Journal of Symbolic Logic, 13: 95–106, 1948.Google Scholar
  96. [Fitch, 1963]
    R B. Fitch. The system cÖ of combinatory logic. Journal of Symbolic Logic, 28: 87–97, 1963.Google Scholar
  97. [Fitch, 1964]
    R B. Fitch. Universal metalanguages in philosophy. Review of Metaphysics, 17: 396402, 1964.Google Scholar
  98. [Fitch, 1966]
    F. B. Fitch. A consistent modal set theory, abstract. Journal of Symbolic Logic, 31: 701, 1966.Google Scholar
  99. [Fitch, 1967a]
    F. B. Fitch. A complete and consistent modal set theory. Journal of Symbolic Logic, 32: 93–103, 1967.Google Scholar
  100. [Fitch, 1967b]
    R. B. Fitch. A theory of logical essences. The Monist, 51: 104–109, 1967.Google Scholar
  101. Fitch, 1974] R B. Fitch. Elements of Combinatory Logic. Yale University Press, 1974.Google Scholar
  102. [Fitch, 1980]
    R B. Fitch. A consistent combinatory logic with an inverse to equality. Journal of Symbolic Logic, 45: 529–543, 1980.Google Scholar
  103. [Fitting, 1986]
    Melvin Fitting. Notes on the mathematical aspects of Kripke’s theory of truth. Notre Dame Journal of Formal Logic, 27: 75–88, 1986.Google Scholar
  104. [Fitting, 1989]
    Melvin Fitting. Bilattices and the theory of truth. Journal of Philosophical Logic, 18: 225–256, 1989.Google Scholar
  105. [Fitting, 1997]
    Melvin Fitting. A theory of truth that prefers falsehood. Journal of Philosophical Logic, 26: 477–500, 1997.Google Scholar
  106. [Flagg and Myhill, 1987a]
    R. Flagg and J. Myhill. An extension of Frege structures. In Lecture Notes in Pure and Applied Mathematics 106, pages 197–217. M.Dekker, New York, 1987.Google Scholar
  107. [Flagg and Myhill, 1987b]
    R. Flagg and J. Myhill. Implications and analysis in classical Frege structures. Annals of Pure and Applied Logic, 34: 33–85, 1987.Google Scholar
  108. [Flagg and Myhill, 1989]
    R. Flagg and J. Myhill. A type-free system extending (zfc). Annals of Pure and Applied Logic, 43: 79–97, 1989.Google Scholar
  109. [Flagg, 1987]
    R. Flagg. tc-continuous lattices and comprehension principles for Frege structures. Annals of Pure and Applied Logic, 36: 1–16, 1987.Google Scholar
  110. [Fraassen, 1966]
    B. C. van Fraassen. Singular terms, truth-value gaps, and free logic. Journal of Philosophy, pages 481–494, 1966.Google Scholar
  111. [Fraassen, 1968a]
    B. C. van Fraassen. Presupposition, implication and self-reference. Journal of Philosophy, 65: 135–152, 1968.Google Scholar
  112. (Fraassen, 1968b]
    B. C. Van Fraassen. Presupposition, implication and self-reference. Journal of Philosophy, 65: 135–152, 1968.Google Scholar
  113. [Fraassen, 1970]
    B. C. van Fraassen. Inference and self-reference. Synthèse, 21: 425–438, 1970.Google Scholar
  114. [Fraassen, 1972]
    B. C. Van Fraassen. Inference and selfreference. In D. Davidson and G. Harman, editors, Semantics of Natural Language, pages 695–708. D. Reidel, Dordrecht, 1972.Google Scholar
  115. [Frege, 1975a]
    G. Frege. Über Sinn und Bedeutung. In Frege [1975b1, pages 40–65. also reprinted in e.g. [Hamish, 1994, pp. 142–160].Google Scholar
  116. [Frege, 1975b]
    Gottlob Frege, editor. Funktion, Begriff Bedeutung. Vandenhoeck and Ruprecht, 1975.Google Scholar
  117. [Friedman and Sheard, 1987]
    Harvey Friedman and Michael Sheard. An Axiomatic Approach to Self-Referential Truth. Annals of Pure and Applied Logic, 33: 1–21, 1987.Google Scholar
  118. [Friedman and Sheard, 1988]
    H. Friedman and M. Sheard. The disjunction and existence properties for axiomatic systems of truth. Annals of Pure and Applied Logic, 33, 1988.Google Scholar
  119. [Gaifman, 1983]
    H. Gaifman. Paradoxes of infinity and self-application i. Erkenntnis, 20: 131–155, 1983.Google Scholar
  120. [Gaifman, 1988]
    H. Gaifman. Pointers semantics: solution to self-referential puzzles i. In M. Vardi, editor, TARK’88, pages 43–59, 1988.Google Scholar
  121. [Gaifman, 1992]
    Haim Gaifman. Pointers to Truth. Journal of Philosophy, 89: 223–261, 1992.Google Scholar
  122. [Germano, 1970]
    Giorgo Germano. Metamathematische Begriffe in Standardtheorien. Archiv fir mathematische Logik, 13: 22–38, 1970.Google Scholar
  123. [Gilmore, 1974]
    P. C. Gilmore. The consistency of partial set theory without extensionality. In T. Jech, editor, Axiomatic Set Theory, part I, volume 13 of Proceedings of Symposia in Pure Mathematics, pages 147–153. AMS, Providence, RI, 1974.Google Scholar
  124. [Gilmore, 1980]
    P. C. Gilmore. Combining unrestricted abstraction with universal quantification. In J. Seldin and R. Hindley, editors, To FL B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 99–123. Academic Press, New York, 1980.Google Scholar
  125. [Gilmore, 1986]
    P. C. Gilmore. Natural deduction based set theories: a new resolution of the old paradoxes. Journal of Symbolic Logic, 51: 393–411, 1986.Google Scholar
  126. [Goddard and Johnston, 1983]
    L. Goddard and M. Johnston. The nature of reflexive paradoxes: part i. Notre Dame Journal of Formal Logic, 24: 491–508, 1983.Google Scholar
  127. [Gödel, 1944]
    Kurt Gödel. Russell’s mathematical logic. In P. A. Schlipp, editor, The Philosophy of Bertrand Russell,pages 123–153. Tudor, New York, 1944. Reprinted in (Benacerraf and Putnam, 1964, pp. 211–232].Google Scholar
  128. [Grim and St. Denis, 1998]
    Patrick Grim and Paul St. Denis. The Philosophical Computer: Exploratory Essays in Philosophical Computer Modeling. MIT Press, Cambridge (Mass. ), 1998.Google Scholar
  129. [Grim, 1991]
    Patrick Grim. The Incomplete Universe: Totality, Knowledge, and Truth. MIT Press, Cambridge (Mass. ), 1991.Google Scholar
  130. [Grishin, 1974]
    V. N. Grishin. A non-standard logic and its application to set theory. In Studies in Formalized Languages and Nonclassical Logics, pages 135–171. Izdat, Nauka, Moskow, 1974. in Russian.Google Scholar
  131. [Grishin, 1981]
    V. N. Grishin. Predicate and set theoretic calculi based on logic without contraction rules. Izvestiya Akndemii Nauk SSSR Seriya Matematicheskaya, 45:47–68, 1981. in Russian. English translation in: Math. USSR Izv., 18:41–59, 1982.Google Scholar
  132. [Groeneveld, 1994]
    Willem Groeneveld. Dynamic semantics and circular propositions. Journal of Philosophical Logic, 23: 267–306, 1994.Google Scholar
  133. [Grover, 1972]
    Dorothy Grover. Propositional Quantifiers. Journal of Philosophical Logic, 1: 111, 1972.Google Scholar
  134. [Grover, 1977]
    Dorothy Grover. Inheritors and paradox. Journal of Philosophy, 74: 590–604, 1977.Google Scholar
  135. [Grover, 1992]
    Dorothy Grover. A Prosentential Theory of Truth. Princeton University Press, Princeton, 1992.Google Scholar
  136. [Gupta and Martin, 1984]
    Anil Gupta and Robert L. Martin. A fixed point theorem for the weak kleene valuation scheme. Journal of Philosophical Logic, 13: 131–135, 1984.Google Scholar
  137. [Gupta, 1978]
    Anil Gupta. Modal Logic and Truth. Journal of Philosophical Logic, 7: 441–472, 1978.Google Scholar
  138. [Gupta, 1982]
    Anil Gupta. Truth and Paradox. Journal of Philosophical Logic, 11:1–60, 1982. Reprinted in [Martin, 1984, pp. 175–236].Google Scholar
  139. [Gupta, 1987]
    Anil Gupta. The meaning of truth. In E. LePore, editor, New Directions in Semantics, pages 453–480. Academic Press, London, 1987.Google Scholar
  140. [Gupta, 1989a]
    A. Gupta. Remarks on definitions and the concept of truth. In Proceedings of the Aristotelian Society, pages 227–246, 1989.Google Scholar
  141. [Gupta, 1989b]
    A. Gupta. Review of: J.Barwise and J. Etchemendy. The Liar: an Essay in Truth and Circularity. Philosophy of Science, 56: 697–709, 1989.Google Scholar
  142. [Gupta, 1993a]
    Anil Gupta. A Critique of Deflationism. Philosophical Topics, 21: 57–81, 1993.Google Scholar
  143. [Gupta, 1993b]
    Anil Gupta. Minimalism. In J. Tomberlin, editor, Philosophical Perspectives 7: Philosophy of Language. Ridgeview Publishing Company, Atascadero, 1993.Google Scholar
  144. [Haack, 1978]
    Susan Haack. Philosophy of Logics. Cambridge University Press, Cambridge, 1978.Google Scholar
  145. [Hâjek et al., 2000]
    Petr Hâjek, Jeff Paris, and J. C. Sheperdson. The Liar Paradox and Fuzzy Logic. Journal of Symbolic Logic, 65: 339–346, 2000.Google Scholar
  146. [Halbach and Horsten, 2002]
    Volker Halbach and Leon Horsten. Recent Developments in the Theory of Truth. In Volker Halbach and Leon Horsten, editors, Principles of Truth, pages 11–35. Dr. Hänsel-Hohenhausen, Frankfurt a.M., 2002.Google Scholar
  147. [Halbach, 1994a]
    Halbach et al.,2003] V. Halbach, H. Leitgeb, and P. Welch. Possible worlds semantics for modal notions conceived as predicates. Journal of Philosophical Logic32:179–223, 2003. Google Scholar
  148. [Halbach, 1994a]
    Volker Halbach. A system of complete and consistent truth. Notre Dame Journal of Formal Logic, 35: 311–327, 1994.Google Scholar
  149. [Halbach, 1994b]
    Volker Halbach. Tarski-Hierarchien. PhD thesis, Ludwigs-Maximilians-Universität, Centrum für Informations and Sprachverarbeitung, München, 1994.Google Scholar
  150. [Halbach, 1995]
    Volker Halbach. Tarski-hierarchies. Erkenntnis, 43: 339–367, 1995.Google Scholar
  151. [Halbach, 1996]
    Volker Halbach. Axiomatische Wahrheitstheorien. Akademie Verlag, Berlin, 1996.Google Scholar
  152. [Halbach, 1997a]
    Volker Halbach. Classical symmetric truth. In G. Meggle and P. Steinacker, editors, Proceedings of the 2nd Conference ssPerspectives in Analytical Philosophy“, volume 1, pages 87–92. de Gruyter, 1997.Google Scholar
  153. [Halbach, 1997b]
    Volker Halbach. Tarskian and Kripkean truth. Journal of Philosophical Logic, 26: 69–80, 1997.Google Scholar
  154. [Halbach, 1999a]
    Volker Halbach. Conservative Theories of Classical Truth. Studia Logica, 62: 353370, 1999.Google Scholar
  155. [Halbach, 1999b]
    Volker Halbach. Disquotationalism and infinite conjunctions. Mind, 108: 1–22, 1999.Google Scholar
  156. [Halbach, 2000a]
    Volker Halbach. Disquotationalism fortified. In André Chapuis and Anil Gupta, editors, Circularity, Definitions, and Truth, pages 155–176. Indian Council of Philosophical Research, New Delhi, 2000.Google Scholar
  157. [Halbach, 2000b]
    Volker Halbach. How Innocent is Detlationism? Synthese, 126: 167–194, 2000.Google Scholar
  158. [Halbach, 2000c]
    Volker Halbach. Truth and Reduction. Erkenntnis, 53: 97–126, 2000.Google Scholar
  159. [Halbach, 2001a]
    Volker Halbach. Disquotational Truth and Analyticity. Journal of Symbolic Logic, 66: 1959–1973, 2001.Google Scholar
  160. [Halbach, 2001b]
    Volker Halbach. Semantics and Deflationism. PhD thesis, Universität Konstanz, 2001.Google Scholar
  161. [Halbach, 2002]
    Volker Halbach. Modalized Disquotationalism. pages 75–101. Dr HänselHohenhausen, Frankfurt a.M, 2002.Google Scholar
  162. [Halbach, 2004]
    Volker Halbach. Der Preis der Wahrheit. In Wolfgang Spotlit, Peter Schröder-Heister, and Erik Olsson, editors, Logik in der Philosophie. Synchron-Wissenschafsverlag der Autoren, Heidelberg, 2004. To appear.Google Scholar
  163. [Hamkins and Lewis, 2000]
    Joel Hamkins and Andy Lewis. Infinite time Turing machines. Journal of Symbolic Logic, 65: 567–604, 2000.Google Scholar
  164. [Hansson, 1979]
    B. Hansson. Paradoxes in a semantic perspective. In J. Hintikka, I. Niiniluoto, and Saarinen E., editors, Essays on Mathematical and Philosophical Logic, volume 122 of Synthese Library, pages 371–358. Reidel, Dordrecht, 1979.Google Scholar
  165. [Hardy, 1997]
    J. Hardy. Three problems for the singular theory of truth. Journal of Philosophical Logic, 26: 501–520, 1997.Google Scholar
  166. [Hare]
    and Kozen, 1984] D. Harel and D. Kozen. A programming language for inductive sets and applications. Inform. Control, 63: 118–139, 1984.Google Scholar
  167. [Harnish, 1994]
    R.M. Harnish. Basic Topics in the Philosophy of Language. Harvester Wheatsheaf, New York, 1994.Google Scholar
  168. [Hellman, 1985]
    Geoffrey Hellman. Review of Martin and Woodruff 1975, Kripke 1975, Gupta 1982 and Herzberger 1982. Journal of Symbolic Logic, 50: 1068–1071, 1985.Google Scholar
  169. [Herzberger and Herzberger, 1981]
    Hans G. Herzberger and Radhika Herzberger. Bhartrhari’s paradox. Journal of Indian Philosophy, 9: 1–17, 1981.Google Scholar
  170. [Herzberger, 1970]
    Hans G. Herzberger. Paradoxes of grounding in semantics. Journal of Philosophy, 67: 145–167, 1970.Google Scholar
  171. [Herzberger, 1980]
    Hans G. Herzberger. Notes on periodicity. Unpublished manuscript, 1980.Google Scholar
  172. [Herzberger, 1982a]
    H. G. Herzberger. Naive semantics and the Liar paradox. Journal of Philosophy, 79: 479–497, 1982.Google Scholar
  173. [Herzberger, 1982b]
    Hans Herzberger. Notes on Naive Semantics. Journal of Philosophical Logic, 11: 61–102, 1982.Google Scholar
  174. [Hintikka, 1998]
    J. Hintikka. Truth definitions, Skolem functions and axiomatic set theory. BSL, pages 303–337, 1998.Google Scholar
  175. [Norwich, 1990]
    Paul Horwich. Truth. Basil Blackwell, Oxford, 1990.Google Scholar
  176. [Norwich, 1998]
    Paul Horwich. Truth. Oxford University Press, Oxford, second edition, 1998.Google Scholar
  177. [Houben, 1985]
    Jan E. M. Houben. Bhartrhari’s solution to the Liar and some other paradoxes. Journal of Indian Philosophy, 23: 381–401, 1985.Google Scholar
  178. [Hughes, 1982]
    G. E. Hughes. John Buridan on Self-Reference. Cambridge University Press, Cambridge, 1982.Google Scholar
  179. [Jacobs, 1989]
    B. Jacobs. The inconsistency of Higher order extensions of Martin-Löf’s type theory. Journal of Philosophical Logic, 18: 399–422, 1989.Google Scholar
  180. [Kahle, 1997]
    Reinhard Kahle. Applikative Theorien und Frege-Strukturen. PhD thesis, Universität Bern, Institut für Informatik und angewandte Mathematik, 1997.Google Scholar
  181. [Kammeradine, 1992a]
    F. Kammeradine. Set theory and nominalisation I. Journal of Logic and Computation, 2: 579–604, 1992.Google Scholar
  182. [Kammeradine, 1992b]
    E Kammeradine. Set theory and nominalisation II. Journal of Logic and Computation, 2: 687–707, 1992.Google Scholar
  183. [Kaplan and Montague, 1960]
    D. Kaplan and R. Montague. A paradox regained. Notre Dame Journal of Formal Logic, 1: 79–90, 1960.Google Scholar
  184. [Kaplan, 1978]
    David Kaplan. On the logic of demonstratives. Journal of Philosophical Logic, 8: 8198, 1978.Google Scholar
  185. [Kaye, 1991]
    Richard Kaye. Models of Peano Arithmetic. Oxford Logic Guides. Oxford University Press, 1991.Google Scholar
  186. [Kindt, 1976]
    W. Kindt. Über sprachen mit wahrheitsprädikat. In C. Habel and S. Kanngiesser, editors, Sprachdynamik und Sprachstruktur. Niemeyer, Tübingen, 1976.Google Scholar
  187. [Kindt, 1978]
    W. Kindt. The introduction of truth predicates into first-order languages. hi F. Guenthner and S. J. Schmidt, editors, Formal Semantics and Pragmatics for Natural Languages, pages 359–371. Reidel, Dordrecht, 1978.Google Scholar
  188. [King, 1994]
    J. P. King. Reconciling Austinian and Russellian accounts of the Liar Paradox. Journal of Philosophical Logic, 23: 451–494, 1994.Google Scholar
  189. [Kirkham, 1992]
    Richard Kirkham. Theories of Truth: a Critical Introduction. MIT Press, Cambridge, Massachusetts, 1992.Google Scholar
  190. [Koons, 1988]
    R. Koons. Doxastic Paradoxes without self-reference. In M. Vardi, editor, TARK’88. Morgan Kaufmann, Los Altos, CA, 1988.Google Scholar
  191. [Koons, 1992]
    Robert C Koons. Paradoxes of Belief and Strategic Rationality. Cambridge University Press, Cambridge, UK, 1992.Google Scholar
  192. [Koons, 1994]
    Robert C. Koons. Review of Revision Theory of Truth. Notre Dame Journal of Formal Logic, 35: 600–631, 1994.Google Scholar
  193. [Kotlarski, 1991]
    Henryk Kotlarski. Full satisfaction classes: a survey. Notre Dame Journal of Formal Logic, 32: 573–579, 1991.Google Scholar
  194. [Kovach, 1997]
    Adam Kovach. Deflationism and the Derivation Game. Mind, 106: 575–579, 1997.Google Scholar
  195. [Koyré, 1947]
    Alexandre Koyré. Épiménide le Menteur. Hermann et Cie, Paris, 1947.Google Scholar
  196. [Krajcek, 1987]
    J. Krajcek. A possible modal formulation of comprehension scheme. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 33: 461–480, 1987.Google Scholar
  197. [Krajcek, 1988]
    J. Krajeek. Some results and problems in the modal set theory mst. Zeitschrift Pr mathematische Logik und Grundlagen der Mathematik, 34: 123–134, 1988.Google Scholar
  198. [Krajewski, 1976]
    S. Krajewski. Nonstandard satisfaction classes. In Set Theory and Hierarchy Theory, Lecture notes in mathematics, pages 121–145. Springer, 1976.Google Scholar
  199. [Kremer, 1986]
    Philip Kremer. Kripke and the logic of truth. Journal of Philosophical Logic, 17: 225278, 1986.Google Scholar
  200. [Kremer, 1993]
    Philip Kremer. The Gupta-Belnap systems Sb and S* are not axiomatizable. Notre Dame Journal of Formal Logic, 34: 583–596, 1993.Google Scholar
  201. [Kripke, 1975]
    Saul Kripke. Outline of a Theory of Truth. Journal of Philosophy, 72: 690–712, 1975.Google Scholar
  202. [Kroon, 1984]
    E Kroon. Stenius on the paradoxes. Theoria, 4: 178–211, 1984.Google Scholar
  203. [Lee, Byeong-Deok, 1998]
    Lee, Byeong-Deok. The paradox of belief instability and a revision theory of belief. PhD thesis, Department of Philosophy, Indiana University, Bloomington, 1998.Google Scholar
  204. [Leitgeb, 1999]
    Hannes Leitgeb. Truth and the liar in De Morgan-valued models. Notre Dame Journal of Formal Logic, 40: 496–514, 1999.Google Scholar
  205. [Leitgeb, 2001a]
    Hannes Leitgeb. Theories of Truth which have no Standard Models. Studia Logica, 68: 68–87, 2001. 2001.Google Scholar
  206. [Leitgeb, 2001b]
    Hannes Leitgeb. Truth as translation: Part A. Journal of Philosophical Logic, 30: 281–307, 2001.Google Scholar
  207. [Leitgeb, 2001c]
    Hannes Leitgeb. Truth as translation: Part B. Journal of Philosophical Logic, 30: 309–328, 2001.Google Scholar
  208. [Lopez-Escobar, 1979]
    E. G. K. Lopez-Escobar. A formal logic for the study of paradoxes. Technical Report TR 79–11, University of Maryland, Department of Mathematics, College Park, Maryland, 1979.Google Scholar
  209. [Löwe and Welch, 2001]
    Benedikt Löwe and Philip D. Welch. Set-Theoretic Absoluteness and the Revision Theory of Truth. Studia Logica, 68: 21–41, 2001.Google Scholar
  210. [Löwe, 2001]
    Benedikt Löwe. Revision sequences and computers with an infinite amount of time. Journal of Logic and Computation, 11:25–40, 2001. Google Scholar
  211. [Maddy, 1983]
    Penelope Maddy. Proper classes. Journal of Symbolic Logic, 48: 113–139, 1983.Google Scholar
  212. [Manna and Shamir, 1976]
    Z. Manna and A. Shamir. The theoretical aspects of the optimal fixed-point. Siam Journal of Computing, 5: 414–426, 1976.Google Scholar
  213. [Manna and Shamir, 1978]
    Z. Manna and A. Shamir. The convergence of functions to fixed-points of recursive definitions. Theoretical Computer Science, 6: 109–141, 1978.Google Scholar
  214. [Mar and St. Denis, 1999]
    Gary Mar and Paul St. Denis. What the Liar taught Achilles. Journal of Philosophical Logic, 28: 29–46, 1999.Google Scholar
  215. [Martin and Woodruff, 1975]
    Robert L. Martin and Peter W. Woodruff. On representing `true-in-L’ in L. Philosophia,5:213–217, 1975. Reprinted in [Martin, 1984, pp. 47–52].Google Scholar
  216. [Martin, 1970]
    Robert L. Martin, editor. The Paradox of the Liar. Yale University Press, New Haven, 1970. Second edition: Ridgeview Pub., Atascadero, CA, 1978.Google Scholar
  217. [Martin, 1977]
    R. L. Martin. On puzzling logical validity. Philosophical Review, 86: 454–473, 1977.Google Scholar
  218. [Martin, 1979a]
    Donald A Martin. Revision and its rivals. In Villanueva [ 1979 ], pages 407–418.Google Scholar
  219. [Martin, 1979b]
    R. M. Martin. The truth about kripke’s `truth’. In Pragmatics, Truth and Language, pages 173–180. D. Reidel, Dordrecht, 1979.Google Scholar
  220. [Martin, 1984]
    Robert L. Martin, editor. Recent Essays on Truth and the Liar Paradox. Oxford University Press, Oxford, 1984.Google Scholar
  221. [Martin, 1992]
    D. A. Martin. Review of: J. barwise and j. etchemendy, The Liar: an Essay in Truth and Circularity. Journal of Symbolic Logic, 57: 252–254, 1992.Google Scholar
  222. [McCarthy, 1988]
    T. McCarthy. Ungroundedness in classical languages. Journal of Philosophical Logic, 17: 61–74, 1988.Google Scholar
  223. [McDonald, 2000]
    Brian E. McDonald. On meaningfulness and truth. Journal of Philosophical Logic, 29: 433–482, 2000.Google Scholar
  224. [McGee, 1979]
    Vann McGee. Revision. In Villanueva [ 1979 ], pages 387–406.Google Scholar
  225. [McGee, 1985]
    Vann McGee. How Truthlike Can a Predicate Be? Journal of Philosophical Logic, 14: 399–410, 1985.Google Scholar
  226. [McGee, 1989]
    V. McGee. Applying Kripke’s theory. Journal of Philosophy, 87: 530–539, 1989.Google Scholar
  227. [McGee, 1991]
    Vann McGee. Truth, Vagueness and Paradox. Hackett Publishing, Indianapolis, 1991.Google Scholar
  228. [McGee, 1992]
    Vann McGee. Maximal consistent sets of instances of Tarski’s schema (T). Journal of Philosophical Logic, 21: 235–241, 1992.Google Scholar
  229. [McGee, 2000]
    Vann McGee. The Analysis of `x-is true’ as `For any-p, if x = `p’, then-p’. In André Chapuis and Anil Gupta, editors, Circularity, Definitions, and Truth, pages 255–272. Journal of Indian Council of Philosophical Research, New Delhi, 2000.Google Scholar
  230. [McGrath, 1997]
    Matthew McGrath. Weak Defiationism. Mind, 106: 69–98, 1997.Google Scholar
  231. [McKie, 1973]
    J. L. McKie. Truth, Probability and Paradox: studies in Philosophical Logic. Oxford, 1973.Google Scholar
  232. [McLarty, 1993]
    D. McLarty. Anti-foundation and self-reference. Journal of Philosophical Logic, 22: 19–28, 1993.Google Scholar
  233. [Menzel, 1986]
    C. Menzel. A complete, type-free “second-order” logic and its philosophical foundations. Technical report, CSLI, 1986.Google Scholar
  234. [Montague, 1950]
    Richard Montague. On the paradox of grounded classes. Journal of Symbolic Logic, 20: 140, 1950.Google Scholar
  235. [Montague, 1963]
    Richard Montague. Syntactic treatments of modality, with corollaries on reflexion principles and finite axiomatizability. Acta Philosophica Fennica, 16: 153–167, 1963.Google Scholar
  236. Moschovakis, 1974]’ M. Moschovakis, Yiannis. Elementary Induction on Abstract Structures. North Holland, Amsterdam, 1974.Google Scholar
  237. [Moschovakis, 1977]
    M. Moschovakis, Yiannis. On the basic notions in the theory of induction. In R. E. Butts and J. Hintikka, editors, Logic, Foundations of Mathematics and Computability Theory, pages 207–236. D. Reidel, Dordrecht, 1977.Google Scholar
  238. [Moschovakis, 1990]
    Y. N. Moschovakis. Sense and reference as algorithm and value. In Logic Colloquium ‘80, Springer Lecture Notes in Logic, pages 210–249. Springer-Verlag, 1990.Google Scholar
  239. [Moss, 1989]
    L. Moss. Review of: J. Barwise and J. Etchemendy. The Liar: an Essay in Truth and Circularity. Bulletin of the American Mathematical Society, 20: 216–225, 1989.Google Scholar
  240. [Myhill, 1950]
    John Myhill. A system which can define its own truth. Fundamenta Mathematicae, 37: 190–192, 1950.Google Scholar
  241. [Myhill, 1975]
    J. Myhill, Levels of implications. In R. B. Marcus, A. R. Anderson, and R. M. Martin, editors, The Logical Enterprise, pages 179–185. Yale University Press, New Haven, 1975.Google Scholar
  242. [Myhill, 1984]
    John Myhill. Paradoxes. Synthese, 60: 129–143, 1984.Google Scholar
  243. [Negri, 1989]
    M. Negri. An autoapplicable truth predicate. Bollettino dell’Unione Matematica Italiana, 3-B: 29–39, 1989.Google Scholar
  244. [Nepeïvoda, 1973]
    N. N. Nepeïvoda. A new notion of predicative truth and definability. Mathematiceskie Zumetki, 13:735–745,1973. English translation in: Mathematical Notes of the Academy of Sciences of the USSR, 13, 439–445.Google Scholar
  245. [Niebergall, 1991]
    Karl-Georg Niebergall. Simultane objektsprachliche Axiomatisierung von Notwendigkeits-and Beweisbarkeitsprädikaten. Master’s thesis, Ludwigs-Maximilians-Universität München, 1991.Google Scholar
  246. [Niemi, 1970]
    G. Niemi. Modality and Self Reference. University Microfilms, Ann Arbor, 1970.Google Scholar
  247. [Nortmann, 1995]
    U. Nortmann. Vier Philosophen über semantische Paradoxien. History and Philosophy of Logic, 16: 217–244, 1995.Google Scholar
  248. [Orilia, 1991]
    F. Orilia. Type-free Property Theory, Exemplification and Russell’s paradox. Notre Dame Journal of Formal Logic, 32: 432–447, 1991.Google Scholar
  249. [Orilia, 1999]
    Francesco Orilia. Predication, Analysis and Reference. CLUEB, collana Heuresis, Linguaggio, Logica, Scienza, diretta da Alberto Pasquinelli and Giorgio Sandri, Bologna, 1999.Google Scholar
  250. [Orilia, 2000a]
    Francesco Orilia. Belief Revision and the Alethic Paradoxes. In A. Chapuis and A. Gupta, editors, Circularity, Definition and Truth, pages 273–296. Indian Council of Philosophical Research, New Delhi, India, 2000. Distribuito fuori dall’India da Ridgeview Publishing Company, Atascadero, CA, USA.Google Scholar
  251. [Orilia, 2000b]
    Francesco Orilia. Meaning and Circular Definitions. Journal of Philosophical Logic, 29: 155–169, 2000.Google Scholar
  252. [Orilia, 2000c]
    Francesco Orilia. Property Theory and the Revision Theory of Definitions. Journal of Symbolic Logic, 65: 212–246, 2000.Google Scholar
  253. [Otway, 1987]
    Wray Otway. Logic in quotes. Journal of Philosophical Logic, 1987.Google Scholar
  254. [Parsons, 1974]
    Charles Parsons. The liar paradox. Journal of Philosophical Logic,3:381–412, 1974. reprinted in [Martin, 1984, pp. 9–461.Google Scholar
  255. [Parsons, 1982]
    C. Parsons. Postscript to `the liar paradox’, 1982.Google Scholar
  256. [Parsons, 1984]
    Terrence Parsons. Assertion, denial and the Liar paradox. Journal of Philosophical Logic, 13: 137–152, 1984.Google Scholar
  257. [Pavlovic, 1992]
    D. Pavlovic. On the structure of paradoxes. Archive for Mathematical Logic, 31: 397406, 1992.Google Scholar
  258. [Pedersen, 2000]
    U. Pedersen. Logic without contraction as based on inclusion and unrestricted abstraction. Studie Logica, 64: 3065–403, 2000.Google Scholar
  259. [Perlis and Subrahmanian, 1994]
    D. Perlis and V. S. Subrahmanian. Meta-languages, reflection principles and self-reference. In D. M. Gabbay, C. J. Hogger, and J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 2. Clarendon Press, Oxford, 1994.Google Scholar
  260. [Perlis, 1985]
    D. Perlis. Languages with self-reference I: foundations. Artificial Intelligence, 25: 30 1322, 1985.Google Scholar
  261. [Perlis, 1988]
    D. Perlis. Languages with selfreference II: Knowledge, belief and modality. Artificial Intelligence, 34: 179–212, 1988.Google Scholar
  262. [Perlis, 1989]
    D. Perlis. Truth and meaning. Artificial Intelligence, 39: 245–250, 1989.Google Scholar
  263. [Plotkin, 1990]
    G. Plotkin. An illative theory of relations. In R. Cooper, K. Mukai, and J. Perry, editors, Situation Theory and Its Applications, pages 134–146. CSLI, Stanford, 1990.Google Scholar
  264. [Pollock, 1977]
    J. L. Pollock. The liar strikes back. Journal of Philosophy, 74: 604–606, 1977.Google Scholar
  265. [Popper, 1954]
    Sir Karl R. Popper. Self reference and meaning in ordinary language. Mind,63:162–169, 1954. Reprinted in [Popper, 1972, pp. 304–311].Google Scholar
  266. [Popper, 1972]
    Sir Karl R. Popper. Conjectures and Refutations. Routledge and Kegan Paul, London, 1972.Google Scholar
  267. [Prawitz, 1965]
    D. Prawitz. Natural Deduction: A Prooftheoretical Study. Alqvist and Wiksell, Stockholm, 1965.Google Scholar
  268. [Priest, 1969]
    Graham Priest. The logic of paradox. Journal of Philosophical Logic, 8: 219–241, 1969.Google Scholar
  269. [Priest, 1984]
    Graham Priest. The logic of paradox revisited. Journal of Philosophical Logic, 13: 153179, 1984.Google Scholar
  270. [Priest, 1987]
    Graham Priest: In Contradiction: A Study of the Transconsistent. M. Nijhoff, Dordrecht, 1987.Google Scholar
  271. [Priest, 1989]
    G. Priest. Reasoning about truth. Artificial Intelligence, 39: 231–244, 1989.Google Scholar
  272. [Prior, 1967]
    Arthur N. Prior. Correspondence theory of truth. In Paul Edwards, editor, The Encyclopedia of Philosophy, vol. 2, pages 223–232. New York: Macmillan, 1967.Google Scholar
  273. [Puntel, 1993]
    Lorenz Puntel. Wahrheitstheorien in der neueren Philosophie. Wissenschaftliche Buchgesellschaft, Darmstadt, third edition, 1993.Google Scholar
  274. [Quine, 1962]
    W. V. O. Quine. Paradox. Scientific American of April, pages 84–96, 1962.Google Scholar
  275. [Ramsey, 1925]
    E P. Ramsey. The foundations of mathematics. In Proceedings of the London Mathematical Society, volume 25, pages 338–384, 1925. Also in F. R. Ramsey, Foundations, pp. 152–212, Routledge and Kegan Paul, London, 1978.Google Scholar
  276. [Reinhardt, 1985]
    W. J. Reinhardt. Remarks on significance and meaningful applicability. In L. P. de Alcantara, editor, Mathematical Logic and Formal Systems, volume 94 of Lecture Notes in Pure and Applied Mathematics, pages 227–242, New York, 1985. Marcel Dekker.Google Scholar
  277. [Reinhardt, 1986]
    William Reinhardt. Some Remarks on Extending and Interpreting Theories with a Partial Predicate for Truth. Journal of Philosophical Logic, 15: 219–251, 1986.Google Scholar
  278. [Reacher and Brandom, 1979]
    N. Rescher and R. Brandom. The logic of inconsistency. Rowman and Littlefield, Totowa, 1979.Google Scholar
  279. [Rivières and Levesque, 1986]
    Jim des Rivières and Hector J. Levesque. The Consistency of Syntactical Treatments of Knowledge. In Joseph Y. Halpern, editor, Theoretical Aspects of Reasoning About Knowledge: Proceedings of the 1986 Conference, pages 115–130, Los Altos, 1986. Morgan Kaufmann.Google Scholar
  280. [Roy, 1999]
    D. K. Roy. On berry’s paradox and non diagonal constructions. Complexity, 4: 35–38, 1999.Google Scholar
  281. [Ruitenburg, 1991]
    W. Ruitenburg. Constructive Logic and the paradoxes. Modern Logic,1(4):271301, 1991.Google Scholar
  282. [Ruitenburg, 1993]
    W. Ruitenburg. Basic Logic and Fregean Set Theory. In M. Bezem and J. W. Klop, editors, Dirk van Dalen Festschrift, number 5 in Quaestiones Infinitae, pages 121–142. Department of Philosophy, Utrecht University, Utrecht, 1993.Google Scholar
  283. [Schweizer, 1992]
    Paul Schweizer. A Syntactical Approach to Modality. Journal of Philosophical Logic, 21: 1–31, 1992.Google Scholar
  284. [Scott, 1975]
    D. S. Scott. Combinators and classes. In C. Böhm, editor, A-Calculus and Computer Science Theory, volume 37 of Lecture Notes in Computer Science, pages 1–26, Berlin, 1975. Springer Verlag.Google Scholar
  285. [Seldin and Hindley, 1980]
    J. P. Seldin and J. R. Hindley, editors. To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. Academic Press, New York, 1980.Google Scholar
  286. [Sheard, 1994]
    Michael Sheard. A Guide to Truth Predicates in the Modem Era. Journal of Symbolic Logic, 59: 1032–1054, 1994.Google Scholar
  287. Shen-Yuting Paradox of the class of all grounded classes. Journal of Symbolic Logic, 18: p114, 1953.Google Scholar
  288. [Simmons, 1987]
    K. Simmons. On a medieval solution to the liar paradox. History and Philosophy of Logic, 8, 1987.Google Scholar
  289. [Simmons, 1990]
    K. Simmons. The diagonal argument and the liar. Journal of Philosophical Logic, 19: 277–303, 1990.Google Scholar
  290. [Simmons, 1993]
    Keith Simmons. Universality and the Liar: An Essay on Truth and the Diagonal Argument. Cambridge University Press, Cambridge, UK, 1993.Google Scholar
  291. [Simmons, 1999]
    K. Simmons. Deflationary Truth and the Liar. Journal of Philosophical Logic, 28: 455–488, 1999.Google Scholar
  292. [Skolem, 1960]
    T. A. Skolem. A set theory based on a certain three valued logic. Mathematica Scandinava, 8: 127–136, 1960.Google Scholar
  293. [Skolem, 1963]
    T. A. Skolem. Studies on the axiom of comprehension. Notre Dame Journal of Formal Logic, 4: 162–170, 1963.Google Scholar
  294. [Skyrms, 1970]
    B. Skyrms. Return of the Liar, three valued logic and the concept of truth. American Philosophical quarterly, 7: 153–161, 1970.Google Scholar
  295. [Skyrms, 1984]
    B. Skyrms. Intensional aspects of semantical self-reference. In R. M. Martin, editor, Pragmatics, Truth and Language, pages 119–132. D. Reidel, Dordrecht, 1984.Google Scholar
  296. [Smith, 1984a]
    J. Smith. An interpretation of Martin-Löf’s type theory in a type-free theory of propositions. Journal of Symbolic Logic, 49: 730–753, 1984.Google Scholar
  297. [Smith, 1984b]
    Stuart Smith. Non-standard Syntax and Semantics and Full Satisfaction Classes. PhD thesis, Yale University, New Haven, Connecticut, 1984.Google Scholar
  298. [Smith, 1987]
    Stuart Smith. Nonstandard characterizations of recursive saturation and resplendency. Journal of Symbolic Logic, 52: 842–863, 1987.Google Scholar
  299. [Smith, 1989]
    Stuart Smith. Nonstandard definability. Annals of Pure and Applied Logic, 42: 21–43, 1989.Google Scholar
  300. [Smorinski, 1985] C. Smorinski. Self-Reference and Modal Logic. Springer, Berlin-Heidelberg, 1985. [Smorynski, 1977]
    C. Smorynski. The incompleteness theorems. In J. Barwise, editor, Handbook of Mathematical Logic, pages 821–865. North Holland, Amsterdam, 1977.Google Scholar
  301. [Smullyan, 1957]
    R. M. Smullyan. Languages in which self-reference is possible. Journal of Symbolic Logic, 22:55–67, 1957. Reprinted in The Philosophy of Mathematics, J. Hintikka, ed. pp. 64–77. Oxford University Press, Oxford, 1969.Google Scholar
  302. [Smullyan, 1981]
    R. M. Smullyan. What Is the Name of This Book? Penguin Books, Harmondsworth, 1981.Google Scholar
  303. [Smullyan, 1984]
    R. M. Smullyan. Chameleonic Languages. Synthese, 60: 201–224, 1984.Google Scholar
  304. [Soames, 1984]
    Scott Soames. What is a theory of truth? Journal of Philosophy, 81: 411–429, 1984.Google Scholar
  305. [Soames, 1999]
    Scott Soames. Understanding Truth. Oxford University Press, New York, 1999.Google Scholar
  306. [Sosa, 1993]
    Ernest Sosa. The Truth of Modest Realism. Philosophical Issues, 3 Science and Knowledge:77–95, 1993.Google Scholar
  307. [Spade, 1988]
    Paul V. Spade. Lies, Language, and Logic in the Late Middle Ages. Variorum Reprints, London, 1988.Google Scholar
  308. [Stenius, 1967]
    E. Stenius. Das Problem der logischen Antinomien. Societas Scientiarum Fennica, Commentationes Phys. Math., 1967.Google Scholar
  309. [Tarski, 1935]
    A. Tarski. Der wahrheitsbegriff in den formalisierten Sprachen. Studia Philosophica, 1:261–405, 1935. Reprinted as [Tarski, 19561. The paper is a translation of the Polish Pojgie prawdy w jgzykach nauk dedukcyjnych, Prace Towarzystwa Naukowego Warszawskiego, Wydzial III matematyczno-fizycznych, no. 34, Warsaw 1933.Google Scholar
  310. [Tarski, 1944]
    A. Tarski. The semantic conception of truth. Philosophy and Phenomenological Research,4:341–375, 1944. Reprinted in e.g. [Harnish, 1994, pp. 536–570].Google Scholar
  311. [Tarski, 1956]
    A. Tarski. The concept of truth in formalised languages. In A. Tarski, editor, Logic, Semantics, Metamathematics, pages 152–278. Oxford University Press, Oxford, 1956. This paper is a translation of [Tarski, 1935 ].Google Scholar
  312. [Tarski, 1969]
    A. Tarski. Truth and proof. Scientific American of June 1969, 220: 63–70, 75–77, 1969.Google Scholar
  313. Neil Tennant. Conservativeness, Incompleteness and Deflationism. Draft, 1999.Google Scholar
  314. [Thomason, 1969]
    R. H. Thomason. A semantical study of constructive falsity. Zeitschrift für mathematische Logik und Grundlagen der Matematik, 15: 247–257, 1969.Google Scholar
  315. [Thomason, 1975]
    R. H. Thomason. Necessity, quotation and truth: an indexical theory. Philosophie, 5: 219–241, 1975.Google Scholar
  316. [Thomason, 1980]
    R. Thomason. A note on syntactical treatments of modality. Synthèse, 44: 391–395, 1980.Google Scholar
  317. [Thomason, 1986]
    R. Thomason. Paradoxes and semantic representation. In J. Y. Halpern, editor, TARK’86. Morgan Kaufmann, Los Altos, CA, 1986.Google Scholar
  318. [Turner, 1983]
    Raymond Turner. Montague semantics, nominalization and Scott’s domains. Linguistics and Philosophy, 6: 259–288, 1983.Google Scholar
  319. [Turner, 1985a]
    Raymond Turner. Nominalization and Scott domains II. Notre Dame Journal of Formal Logic, 26: 463–478, 1985.Google Scholar
  320. [Turner, 1985b]
    Raymond Turner. Three theories of nominalized predicates. Studia Logica, 44: 165186, 1985.Google Scholar
  321. [Turner, 1987]
    Raymond Turner. A theory of properties. Journal of Symbolic Logic, 52: 445–472, 1987.Google Scholar
  322. [Turner, 1990a]
    Raymond Turner. Logics of truth. Notre Dame Journal of Formal Logic, 31: 308–329, 1990.Google Scholar
  323. [Turner, 1990b]
    Raymond Turner. Truth and Modality for Knowledge Representation. Pitman, London, 1990.Google Scholar
  324. [Tzouvaras, 1998]
    A. Tzouvaras. Logic of knowledge and utterance and the Liar. Journal of Philosophical Logic, 27: 85–108, 1998.Google Scholar
  325. [Villanueva, 1979]
    Enrique Villanueva, editor. Truth, number 8 in Philosophical Issues, Atascadero, CA, 1979. Ridgeview Publishing Company.Google Scholar
  326. [Visser, 1981]
    A. Visser. A propositional logic with explicit fixed points. Studia Logica, 40: 155–175, 1981.Google Scholar
  327. [Visser, 1984]
    Albert Visser. Four-valued semantics and the liar. Journal of Philosophical Logic, 13: 181–212, 1984.Google Scholar
  328. [Visser, 1989]
    Albert Visser. Semantics and the liar paradox. In D. M. Gabbay and Franz Günthner, editors, Handbook of Philosophical Logic, volume IV, pages 617–706. Reidel, Dordrecht, 1989.Google Scholar
  329. [Welch, 2001]
    Philip D. Welch. On Gupta—Belnap Revision Theories of truth, Kripkean Fixed points, and the Next Stable Set. Bulletin for Symbolic Logic, 7: 345–360, 2001.Google Scholar
  330. [Welch, 2003]
    Philip D. Welch. On Revision Operators. Journal of Symbolic Logic, 68: 689–711, 2003.Google Scholar
  331. [White, 1979]
    R. B. White. The consistency of the axiom of comprehension in the infinite value predicate logic of lukasiewicz. Journal of Philosophical Logic, pages 509–534, 1979.Google Scholar
  332. [White, 1987]
    R. B. White. A demostrably consistent type-free extension of the logic BCK. Mathematica Japonica, 32: 149–169, 1987.Google Scholar
  333. [White, 1993]
    R. B. White. A consistent theory of attributes in a logic without contraction. Studia Logica, 52: 113–142, 1993.Google Scholar
  334. [Woodruff, 1984]
    Peter Woodruff. Paradox, truth and logic I: Paradox and truth. Journal of Philosophical Logic, 13: 867–896, 1984.Google Scholar
  335. [Yablo, 1982]
    Stephen Yablo. Grounding, dependence, and paradox. Journal of Philosophical Logic, 11: 117–137, 1982.Google Scholar
  336. [Yablo, 1985]
    Stephen Yablo. Truth and reflection. Journal of Philosophical Logic, 14: 297–349, 1985.Google Scholar
  337. [Yaqúb, 1993]
    Aladdin M. Yaqúb. The Liar Speaks the Truth: A Defense of the Revision Theory of Truth. Oxford University Press, New York, 1993.Google Scholar
  338. [Zwicker, 1987]
    W. S Zwicker. Playing games with games: the hypergame paradox. American Mathematical Monthly, 94: 507–514, 1987.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Albert Visser
    • 1
  1. 1.Utrecht UniversityThe Netherlands

Personalised recommendations