Skip to main content

Understanding Alkyl Substituent Effects in R-O Bond Dissociation Reactions in Open- and Closed-Shell Systems

  • Chapter
Fundamental World of Quantum Chemistry

Abstract

The effects of alkyl substituents (R = Me, Et, i-Pr and t-Bu) on the barriers and enthalpies for R—O bond dissociation reactions are examined via highlevel ab initio molecular orbital calculations for the open-shell systems, R—OCH2• and R—OC(SCH3)2•. To assist in the interpretation of the results, R—X bond dissociation energies (BDEs) are also examined in the closedshell systems (X = H, CH3, OCH3, OH and F). The effects of increasing alkylation on the R—O bond dissociation reactions show an unusual and somewhat counterintuitive trend. Specifically, the BDEs broadly increase and the barriers decrease in going from R = Me to R = t-Bu. However, on closer examination, these effects are readily understood in terms of the competing effects of hyperconjugative stabilization of the leaving R• radical and charge-transfer stabilization of the R—O bond. As part of this work, we also show that B3-LYP yields the wrong qualitative trends for the effect of alkyl substituents on the R—O BDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. We note that a stability comparison for non-isomeric radicals is not strictly— formally only the stabilities of isomeric species can be directly y compared. Nevertheless, the concept of “stabilities” remains a most useful one for discussing the reactivities of non-isomeric species once this qualification is recognized.

    Google Scholar 

  2. See, for example: J. March, Advanced Organic Chemistry: Reactions, Mechanisms and Structure (McGraw-Hill, New York, 1963), p. 153.

    Google Scholar 

  3. A. A. Zavitsas J. Chem. Ed. 78, 417–419 (2001)

    Article  CAS  Google Scholar 

  4. N. Matsunaga, D. W. Rogers and A. A. Zavitsas, J. Org. Chem. 68, 3158–3172 (2003).

    Article  CAS  Google Scholar 

  5. M. L. Coote, A. Pross and L. Radom, Org. Lett., in press (2003).

    Google Scholar 

  6. M. L. Coote and L. Radom, Macromolecules, in press (2003).

    Google Scholar 

  7. J. Chiefari, Y. K. B. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo and S.H. Thang. Macromolecules 31, 5559–5562 (1998).

    Article  CAS  Google Scholar 

  8. W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986).

    Google Scholar 

  9. W. Koch, M. C. Holthausen, A Chemist’s Guide to Denisty Functional Theory Weinheim, 2000).

    Google Scholar 

  10. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmaim, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, GAUSSIAN 98, Gaussian, Inc., Pittsburgh, PA, 1998.

    Google Scholar 

  11. H.-J. Werner, P. J. Knowles, R. D. Amos, A. Bernhardsson, A. Berning, P. Celani, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, T. Korona, R. Lindh, A. W. Lloyd, S. J. McNicholas, F. R. Manby, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, R. Pitzer, G. Rauhut, M. Schütz, H. Stoll, A. J. Stone, R. Tarroni, and T. Thorsteinsson, MOLPRO 2000.6, University of Birmingham, Birmingham, 1999.

    Google Scholar 

  12. J. F. Stanton, J. Gauss, J. D. Watts, M. Nooijen, N. Oliphant, S. A. Perera, P. G. Szalay, W. J. Lauderdale, S. A. Kucharski, S. R. Gwaltney, S. Beck, A. Balková, D. E. Bernholdt, K. K. Baeck, P. Rozyczko, H. Sekino, C. Hober, and R. J. Bartlett, ACES II, Quantum Theory Project, University of Florida, Gainsville, 1992.

    Google Scholar 

  13. A. P. Scott and L. Radom, J. Phys. Chem. 100, 16502–16513 (1996).

    Article  CAS  Google Scholar 

  14. D. J. Henry, M. B. Sullivan and L. Radom, J. Chem. Phys. 118, 4849–4860 (2003).

    Article  CAS  Google Scholar 

  15. A. Nicolaides, A. Rauk, M. N. Glukhovtsev and L. Radom, J. Phys. Chem. 100, 17460–17464 (1996).

    Article  CAS  Google Scholar 

  16. P. J. Linstrom and W. G. Mallard, Eds. NIST Chemistry WebBook, NIST Standard Reference Database No. 69 (National Institute of Standards and Technology, Gaithersburg MD, 2003), http://webbook.nist.gov.

    Google Scholar 

  17. C.-C. Chen and J. W. Bozzelli, J. Phys. Chem. A 107, 4531–4546 (2003).

    Article  CAS  Google Scholar 

  18. S. J. Blanksby and G. B. Ellison, Acc. Chem. Res. 36, 255–263 (2003).

    Article  CAS  Google Scholar 

  19. Y.-R. Luo, Handbook of Bond Dissociation Energies in Organic Compounds (CRC Press, Boca Raton, FL, 2003).

    Google Scholar 

  20. A. Pross, Theoretical and Physical Principles of Organic Reactivity (John Wiley & Sons, Inc., New York, 1995).

    Google Scholar 

  21. Situations in which the bond energy is dominated by resonance between the covalent and ionic contributions have been named “charge-shift bonding” by Shaik, Hiberty and co-workers. For more detailed discussions of this effect, see for example: (a) S. Shaik, P. Maitre, G. Sini and P. C. Hiberty, J. Am. Chem. Soc. 114, 7861–7866 (1992)

    Article  CAS  Google Scholar 

  22. J. M. Galbraith, E. Blank, S. Shaik, and P. C. Hiberty, Chem. Eur. J. 6, 2425–2434 (2000)

    Article  CAS  Google Scholar 

  23. (c) A. Shurki, P. C. Hiberty and S. Shaik, J. Am. Chem. Soc. 121, 822–834 (1999).

    Article  CAS  Google Scholar 

  24. (a) M. G. Evans, J. Gergely and E. C. Seaman, J. Polym. Sci. 3, 866–879 (1948)

    Article  CAS  Google Scholar 

  25. (b) M. G. Evans, Disc. Faraday Soc. 2, 271–279 (1947).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Coote, M.L., Pross, A., Radom, L. (2004). Understanding Alkyl Substituent Effects in R-O Bond Dissociation Reactions in Open- and Closed-Shell Systems. In: Brändas, E.J., Kryachko, E.S. (eds) Fundamental World of Quantum Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0448-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0448-9_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6687-9

  • Online ISBN: 978-94-017-0448-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics