Skip to main content

Low-Lying Ionization Potentials of B3N and Photodetachment Energies of B3N- Using the Multiconfigurational Spin Tensor Electron Propagator Method

  • Chapter
Fundamental World of Quantum Chemistry

Abstract

The multiconfigurational spin tensor electron propagator method (MCSTEP) is a Green’s function based approach for directly calculating accurately the low-lying ionization potentials (IPs) and electron affinities (EAs) of highly correlated closed and open shell molecules. We have applied MCSTEP to determine the vertical ionization potentials and adiabatic ionization potentials of B3N and B3N. To the best of our knowledge, this is the first time the vertical and adiabatic IPs of B3N have been reported. The MCSTEP photodetachment energies (PDEs) of B3N are in good agreement with experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. B. Mirkarimi, K. F. McCarty, D. L. Medlin, Mater. Sci. Eng., R. 21, 47 (1997). (Springer, Berlin, 1988).

    Article  Google Scholar 

  2. K. Raghavachari, J. S. Binkley, J. chem. Phys. 87, 2191 (1987).

    Article  CAS  Google Scholar 

  3. W. J. Weltner, R. J. V. Zee, Chem. Rev. 89, 1713 (1989).

    Article  CAS  Google Scholar 

  4. J. D. Watts, R. J. Bartlett, J. chem. Phys. 97, 3445 (1992).

    Article  CAS  Google Scholar 

  5. M. S. Deleuze, M. G. Giuffreda, J.-P. François, J. chem. Phys. 112, 5325 (2000).

    Article  CAS  Google Scholar 

  6. R. Ramanathan, J. A. Zimmerman, J. R. Eyler, J. chem. Phys. 98, 7838(1993).

    Article  CAS  Google Scholar 

  7. J. V. Ortiz, J. chem. Phys. 99, 6716 (1993).

    Article  CAS  Google Scholar 

  8. G. Seifert, B. Schwab, S. Becker, H.-J. Dietze, Int. J. Mass Spectrom. Ion Processes 85, 327 (1988).

    Article  CAS  Google Scholar 

  9. S. Becker, H.-J. Dietze, Int. J. Mass Spectrom. Ion Processes 73, 157 (1986).

    Article  CAS  Google Scholar 

  10. J. M. L. Martin, Z. Slanina, J.-P. Franois, R. Gijbels, Molec. Phys. 82, 155 (1994).

    Article  CAS  Google Scholar 

  11. Z. Slanina, J. M. L. Martin, J.-P. Franois, R. Gijbels, Chem. Phys. 178, 77 (1993).

    Article  CAS  Google Scholar 

  12. Z. Slanina, J. M. L. Martin, J.-P. Franois, R. Gijbels, Chem. Phys. Lett. 201, 54 (1993).

    Article  CAS  Google Scholar 

  13. K. R. Asmis, T. R. Taylor, D. M. Neumark, Eur. Phys. J. D 9, 257 (1999).

    Article  CAS  Google Scholar 

  14. K. R. Asmis, T. R. Taylor, D. M. Neumark, J. chem. Phys. 111, 10491 (1999).

    Article  CAS  Google Scholar 

  15. P. Jørgensen, J. Simons, Second Quantization-Based Methods in Quantum Chemistry, (Academic Press, New York, 1981).

    Google Scholar 

  16. J. Linderberg, Y. Ă–hm, Propagators in Quantum Chemistry, (Academic Press, London, 1973).

    Google Scholar 

  17. M. F. Herman, K. F. Freed, D. L. Yeager, Adv. Chem. Phys. 48, 1 (1981).

    Article  CAS  Google Scholar 

  18. Y. Ă–hrn, G. Born, Adv. Quantum Chem. 13, 1 (1981).

    Article  Google Scholar 

  19. J. Schirmer, L. S. Cederbaum, W. von Niessen, Chem. Phys. 56, 285 (1981).

    Article  CAS  Google Scholar 

  20. W. von Niessen, L. S. Cederbaum, J. Schirmer, G. H. F. Diercksen, W. P. Kraemer, J. Electron Spectrosc. Relat. Phenom. 28, 45 (1982).

    Article  Google Scholar 

  21. J. T. Golab, D. L. Yeager, J. chem. Phys. 87, 2925 (1987).

    Article  CAS  Google Scholar 

  22. J. A. Nichols, D. L. Yeager, P. Jørgensen, J. chem. Phys. 80, 293 (1984).

    Article  CAS  Google Scholar 

  23. A. McKellar, D. Heryadi, D. L. Yeager, J. Nichols, Chem. Phys. 238, 1 (1998).

    Article  CAS  Google Scholar 

  24. A. McKellar, D. Heryadi, D. Yeager, Int. J. Quantum Chem. Symp. 70, 729 (1998).

    Article  CAS  Google Scholar 

  25. D. Heryadi, C. T. Jones, D. L. Yeager, J. chem. Phys. 107, 5088 (1997).

    Article  CAS  Google Scholar 

  26. R. L. Graham, J. T. Golab, D. L. Yeager, J. chem. Phys. 88, 2572 (1988).

    Article  CAS  Google Scholar 

  27. R. L. Graham, D. L. Yeager, A. Rizzo, J. chem. Phys. 91, 5451 (1989).

    Article  CAS  Google Scholar 

  28. V. G. Zakrzewski, J. V. Ortiz, J. A. Nichols, D. Heryadi, D. L. Yeager, J. T. Golab, Int. J. Quantum Chem. 60, 29 (1996).

    Article  Google Scholar 

  29. D. L. Yeager, in D. Mukherjee (Ed.), Applied Many-Body Methods in Spectroscopy and Electronic Structure. (Plenum, New York, 1992).

    Google Scholar 

  30. D. L. Yeager, Trends in Chemical Physics 7, 65 (1999).

    CAS  Google Scholar 

  31. D. L. Yeager, J. chem. Phys. 105, 8170 (1996).

    Article  CAS  Google Scholar 

  32. T. H. Dunning, J. chem. Phys. 90, 1007 (1989).

    Article  CAS  Google Scholar 

  33. R. A. Kendall, T. H. Dunning, R. J. Harrison, J. chem. Phys. 96, 6796 (1992).

    Article  CAS  Google Scholar 

  34. K. A. Peterson, T. H. Dunning, J. chem. Phys. 102, 2032 (1995).

    Article  CAS  Google Scholar 

  35. H. J. Werner, P. Knowles, Molpro is a package of ab initio programs written by Werner, H. -J. and Knowles, P. J. with contributions from Almlöf, J.; Amos, R. D.; Berning, A.; Deegan, M.J.O.; Eckert, F.; Elbert, S. T.; Hampel, C.; Lindh, R.; Meyer, W.; Nicklass, A.; Peterson, K.; Pitzer, R.; Stone, A. J.; Taylor, P. R.; Mura, M. E.; Pulay, P.; Schuetz, M.; Stoll, H.; Thorsteinsson, T.; and Cooper, D. L.

    Google Scholar 

  36. D. L. Yeager, J. A. Nichols, J. T. Golab, J. chem. Phys. 97, 8841 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mahalakshmi, S., Yeager, D.L. (2004). Low-Lying Ionization Potentials of B3N and Photodetachment Energies of B3N- Using the Multiconfigurational Spin Tensor Electron Propagator Method. In: Brändas, E.J., Kryachko, E.S. (eds) Fundamental World of Quantum Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0448-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0448-9_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6687-9

  • Online ISBN: 978-94-017-0448-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics