Skip to main content

The Cavity Model with a Surface Formed by two Intersecting Spheres. An Analytical Treatment

  • Chapter
  • 474 Accesses

Abstract

A new cavity model is considered as a modification of spherically symmetric Born-Onsager model. For the analytical treatment the cavity surface is represented as the surface of two intersecting spheres. The general solution of electrostatic problem is obtained in toroidal coordinate system and after the application of Mehler-Fock integral transform it is reduced to a solution of the two coupled Fredholm equations of the second kind with a positive defined symmetric kernel. The solution of the external and of the internal Dirichlet problem takes very simple form for the rational values of angles which define the parameters of the both spheres. The total charge induced on each sphere is leisurely changing function of the position of a moving charge.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Karelson, M. and Zerner M.C. (1992) Theoretical treatment of solvent effects on electronic structure. J. Phys. Chem., 96, 6949–6957.

    Article  CAS  Google Scholar 

  2. Tomasi, J. and Persico, M. (1994) Molecular interactions in solution: An overview of methods based on continuous distribution of the solvent. Chem.Rev., 94, 2027–2094.

    Article  CAS  Google Scholar 

  3. Goldstein, I.P. and Petrov, E.S.(1993) Influence of media polarity on the electronic structure and energy of molecules in solutions. Progress in chemistry (Russ.) 62, 667–679.

    Google Scholar 

  4. Marcus, R.A. (1956) On the theory of oxidation-reduction reactions involving electron transfer I. Journ. Chem. Phys., 24, 966–978.

    Article  CAS  Google Scholar 

  5. Marcus, R.A. (1956) Electrostatic free energy and other properties of states having nonequilibrium polarisation.II Journ. Chem. Phys., 24, 979–989.

    Article  CAS  Google Scholar 

  6. Tulub, A.B. and Kuchtina, E. A.(1993)Decomposition of electronic properties and solvation energy for surface active molecules. Journ. Structure Chem. (Russ.) 34, N 22, 3–10.

    CAS  Google Scholar 

  7. Tulub, A.B. and Kuchtina, E. A. (1994) On the reaction field acting on a molecule near the liquid surface. Journ. Structure Chem.(Russ.) 35, N26, 3–12.

    CAS  Google Scholar 

  8. Tulub, A.B. and Kuchtina, E. A. (2000) Reactive —field model near a liquid surface. Journ. Phys. Chem. (Russ.), 74, 694–699.

    CAS  Google Scholar 

  9. Herzfeld, K.(1916) On the statistics of hydrogen atom in Bohr’s model. Ann. d. Phys., 51,261–284.

    Article  Google Scholar 

  10. Tulub, A.V., Bratssev V.F., Pack M.V. (1993) Correlation between refraction index and energy properties of Xe near the phase transition into metal. The model of a compressed atom. Opt. Spectrosc. 76, 464–468.

    Google Scholar 

  11. Pupyshev V.I. and Scherbinin A.V. (1998) The Lenz vector in the confined hydrogen atom problem. Chem. Phys.Lett.,295, 217–222.

    Article  CAS  Google Scholar 

  12. Tulub, A.V. (1992) Electron motion near a spherical surface. Opt. Spectrosc. 73, 48–54.

    CAS  Google Scholar 

  13. Tulub, A. V. (1991) Theoretical description of intermolecular forces near the surface dividing two media. in M.G. Veselov, A.V. Tulub (Eds.) Problems in Modern Quantum Chemistry, V.3. Nauka, Leningrad, pp. 197–261.

    Google Scholar 

  14. Lebedev, N.N. (1953) Specialfunctions and their applications. Nauka, Moscow.

    Google Scholar 

  15. Gobson, E.W. (1931)The Theory of Spherical and Ellipsoidal Harmonics. Cambridge. At the University Press.

    Google Scholar 

  16. Fock, V.A. (1943) On the representation of an arbitrary function by integral involving Legendre’s functions with a complex index. Dokl. Acad. of Science of USSR 39, 279–283.

    Google Scholar 

  17. Bateman, H., Erdélyi A. (1953) Higher transcendental functions VoI.I. New York, Toronto London: MC Grow-Hill Company, INC.

    Google Scholar 

  18. Fock, V.A (1943) Electrical field near a depression in a conducting plane. Dokl. Acad. of Science of USSR 40, 391–303;

    Google Scholar 

  19. Fock, V.A (1943) Electrical field near a depression in a conducting plane. Journ. Exp. Theor. Phys. 13, 253–269.

    Google Scholar 

  20. Tulub, A.B. (1988) Nonhomogeneous electric field near a metal surface with a depression. In: Yu. N. Demkov, Yu.V. Novozhilov, P.P. Pavinskii (Eds.) Problems of Theoretical Physics V.3, Leningrad University Press, pp.114–126.

    Google Scholar 

  21. Buchholz, M. (1958) Elektrische und Magnetische Potenzialfelder. Springer Verlag.

    Google Scholar 

  22. Jackson, J.D. (1962) Classical Electrodynamics. John Wiley & Sons, INC. New York, London.

    Google Scholar 

  23. Durand E. (1953) Electrostatique et Magnetostatique, Masson, Paris.

    Google Scholar 

  24. Smythe, W.R. (1947) Static and Dynamic Electricity , 2 ed., McGraw — Hill, New -York.

    Google Scholar 

  25. Heine, E. (1881) Handbuch der Kugelfunktionen, Bd.II, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tulub, A.V. (2004). The Cavity Model with a Surface Formed by two Intersecting Spheres. An Analytical Treatment. In: Brändas, E.J., Kryachko, E.S. (eds) Fundamental World of Quantum Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0448-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0448-9_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6687-9

  • Online ISBN: 978-94-017-0448-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics