Skip to main content

Study of Heavy Elements by Relativistic Fock Space and Intermediate Hamiltonian Coupled Cluster Methods

  • Chapter
Fundamental World of Quantum Chemistry

Abstract

High-accuracy ground- and excited-state energies of heavy and superheavy atoms are calculated in the framework of the Dirac-CoulombBreit Hamiltonian. Electron correlation is treated by the Fock-space coupled cluster method. Several variants of the recently developed intermediate Hamiltonian approach are also described. These schemes make possible much larger P (model) spaces, which may be varied to convergence without encountering intruder state problems, thus enhancing accuracy and allowing application to states not accessible before. In particular, the mixed-sector IH scheme suppresses intruder states coming from higher Fock space sectors, making it possible to use quasi-closed shells (p2, d4 etc.) as reference. Very large basis sets, going up to l= 8, are used. The outer 20–40 electrons are correlated. Representative applications are described, showing excellent agreement with experimentally known transition energies of heavy atoms, usually within a few hundredths of an eV. This makes possible reliable predictions for superheavy elements, found to possess chemical and spectroscopic properties significantly different from their lighter homologues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, e.g., J. Sucher, in Relativistic, Quantum Electrodynamic, and Weak Interaction Effects in Atoms, ed. W. Johnson, P. Mohr, and J. Sucher (American Institute of Physics, New York, 1989), p. 28.

    Google Scholar 

  2. G. Breit, Phys. Rev. B34, 553 (1929);

    Article  CAS  Google Scholar 

  3. G. Breit, Phys. Rev. 36, 383 (1930);

    Article  CAS  Google Scholar 

  4. G. Breit, Phys. Rev. 39, 616 (1932).

    Article  CAS  Google Scholar 

  5. G.E. Brown and D.G. Ravenhall, Proc. Roy. Soc. A 208, 552 (1951).

    Article  CAS  Google Scholar 

  6. H.A. Bethe and E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer-verlag, Berlin, 1957).

    Google Scholar 

  7. J. Sucher, Phys. Rev. A 22, 348 (1980);

    Article  CAS  Google Scholar 

  8. J. Sucher, Phys. Scr. 36, 271 (1987).

    Article  CAS  Google Scholar 

  9. W. Buchmüller and K. Dietz, Z. Phys. C 5, 45 (1980).

    Article  Google Scholar 

  10. I. Lindgren, in Many-Body Methods in Quantum Chemistry, ed. U. Kaldor, Lecture Notes in Chemistry Vol. 52 (Springer-Verlag, Heidelberg, 1989) p. 293;

    Chapter  Google Scholar 

  11. I. Lindgren, Nucl. Instrum. Methods B31, 102 (1988).

    Article  Google Scholar 

  12. M. Mittleman, Phys. Rev. A 4, 893 (1971);

    Article  Google Scholar 

  13. M. Mittleman, Phys. Rev. A 5, 2395 (1972);

    Article  Google Scholar 

  14. M. Mittleman, Phys. Rev. A 24, 1167 (1981).

    Article  CAS  Google Scholar 

  15. A.S. Davydov, Quantum Mechanics (NEO Press, Peaks Island, Maine, 1966) chap. VIII.

    Google Scholar 

  16. Y.-K. Kim, Phys. Rev. 154, 17 (1967).

    Article  CAS  Google Scholar 

  17. T. Kagawa, Phys. Rev. A 12, 2245 (1975);

    Article  CAS  Google Scholar 

  18. T. Kagawa, Phys. Rev. A 22, 2340 (1980).

    Article  CAS  Google Scholar 

  19. W.R. Johnson and J. Sapirstein, Phys. Rev. Lett. 57, 1126 (1986);

    Article  CAS  Google Scholar 

  20. W.R. Johnson, M. Idrees, and J. Sapirstein, Phys. Rev. A 35, 3218 (1987);

    Article  CAS  Google Scholar 

  21. S.A. Blundell, W.R. Johnson, Z.W. Liu, and J. Sapirstein, Phys. Rev. A 39, 3768 (1989);

    Article  CAS  Google Scholar 

  22. W.R. Johnson, S.A. Blundell, and J. Sapirstein, Phys. Rev. A 37, 307 (1988);

    Article  CAS  Google Scholar 

  23. H.M. Quiney, I.P. Grant, and S. Wilson, J. Phys. B 20, 1413 (1987);

    Article  CAS  Google Scholar 

  24. H.M. Quiney, I.P. Grant, and S. Wilson, Phys. Scr. 36, 460 (1987);

    Article  CAS  Google Scholar 

  25. H.M. Quiney, I.P. Grant, and S. Wilson, J. Phys. B 23, L271 (1990); I.P. Grant and H.M. Quiney, Adv. Atom. Molec. Phys. 23, 37 (1988).

    Article  Google Scholar 

  26. I.P. Grant and H.M. Quiney, Adv. Atom. Molec. Phys. 23, 37 (1988).

    Article  Google Scholar 

  27. Y. Ishikawa, R.C. Binning, and H. Sekino, Chem. Phys. Lett. 160, 206 (1989);

    Article  CAS  Google Scholar 

  28. Y. Ishikawa, Phys. Rev. A 42, 1142 (1990);

    Article  CAS  Google Scholar 

  29. Y. Ishikawa, Chem. Phys. Lett. 166, 321 (1990);

    Article  CAS  Google Scholar 

  30. Y. Ishikawa and H.M. Quiney, Phys. Rev. A 47, 4733 (1994).

    Article  Google Scholar 

  31. Y. Ishikawa and K. Koc, Phys. Rev. A 50, 4733 (1994).

    Article  CAS  Google Scholar 

  32. W.R. Johnson and G. Soff, At. Data Nucl. Data Tables 33, 405 (1985).

    Article  CAS  Google Scholar 

  33. L. Visscher and K.G. Dyall, At. Data Nucl. Data Tables 67, 207 (1997).

    Article  CAS  Google Scholar 

  34. J.-P. Desclaux, Comput. Phys. Commun. 9, 31 (1975).

    Article  Google Scholar 

  35. I.P. Grant, B.J. McKenzie, P.H. Norrington, D.F. Mayers, and N.C. Pyper, Comput. Phys. Commun. 21, 207 (1980).

    Article  CAS  Google Scholar 

  36. Y. Ishikawa and U. Kaldor, in Computational Chemistry: Review of Current Trends, ed. J. Leszczynski (World Scientific, Singapore, 1996), vol. I, p. 1.

    Chapter  Google Scholar 

  37. U. Kaldor and E. Eliav, Adv. Quantum Chem. 31, 313 (1998).

    Article  CAS  Google Scholar 

  38. Y.-S. Lee and A.D. McLean, J. Chem. Phys. 76, 735 (1982).

    Article  CAS  Google Scholar 

  39. P.J.C. Aerts and W.C. Nieuwpoort, Chem. Phys. Lett. 113, 165 (1985); ibid. 125, 83 (1986).

    Article  Google Scholar 

  40. R.E. Stanton and S. Havriliak, J. Chem. Phys. 81, 1910 (1984).

    Article  CAS  Google Scholar 

  41. Y. Ishikawa, R. Baretty, and R.C. Binning, Intern. J. Quantum Chem. Symp. 19, 285 (1985);

    CAS  Google Scholar 

  42. Y. Ishikawa and H. Sekino, Chem. Phys. Lett. 165, 243 (1990).

    Article  CAS  Google Scholar 

  43. Y. Ishikawa, R.C. Binning, and K.M. Sando, Chem. Phys. Lett. 101, 111 (1983);

    Article  CAS  Google Scholar 

  44. Y. Ishikawa, R.C. Binning, and K.M. Sando Chem. Phys. Lett. 105, 189 (1984);

    Article  CAS  Google Scholar 

  45. Y. Ishikawa, R.C. Binning, and K.M. Sando Chem. Phys. Lett. 117, 444 (1985);

    Article  CAS  Google Scholar 

  46. Y. Ishikawa, R. Baretty, and R.C. Binning, Chem. Phys. Lett. 121, 130 (1985);

    Article  CAS  Google Scholar 

  47. Y. Ishikawa and H.M. Quiney, Intern. J. Quantum Chem. Symp. 21, 523 (1987).

    Article  CAS  Google Scholar 

  48. I.P. Grant, Adv. Phys. 19, 747 (1970);

    Article  CAS  Google Scholar 

  49. I.P. Grant and H.M. Quiney, Adv. Atom. Molec. Phys. 23, 37 (1988).

    Article  Google Scholar 

  50. K.G. Dyall, I.P. Grant, C.T. Johnson, F.A. Parpia, and E.P. Plummer, Comput. Phys. Commun. 55, 425 (1989).

    Article  CAS  Google Scholar 

  51. F.A. Parpia, C. Froese-Fischer, and I.P. Grant, Comput. Phys. Commun. 94, 249 (1996).

    Article  CAS  Google Scholar 

  52. G.C. Rodrigues, M.A. Ourdane, J. Bieron, P. Indelicato, and E. Lindroth, Phys. Rev. A 63, 012510 (2000).

    Article  Google Scholar 

  53. M.J. Vilkas, K. Koc, and Y. Ishikawa, Chem. Phys. Lett. 280, 167 (1997);

    Article  CAS  Google Scholar 

  54. M.J. Vilkas, Y. Ishikawa, and K. Koc, Phys. Rev. E 58, 5096 (1998);

    Article  CAS  Google Scholar 

  55. M.J. Vilkas, Y. Ishikawa, and K. Koc, Intern. J. Quantum Chem. 70, 813 (1998).

    Article  CAS  Google Scholar 

  56. J. Sapirstein, Rev. Mod. Phys. 70, 55 (1998).

    Article  CAS  Google Scholar 

  57. M.J. Vilkas, Y. Ishikawa, and K. Koc, Phys. Rev. A 60, 2808 (1999);

    Article  CAS  Google Scholar 

  58. Y. Ishikawa, M.J. Vilkas, and K. Koc, Intern. J. Quantum Chem. 77, 433 (2000);

    Article  CAS  Google Scholar 

  59. Y. Ishikawa and M. J. Vilkas, Phys. Rev. A 63, 042506 (2001);

    Article  CAS  Google Scholar 

  60. M. J. Vilkas and Y. Ishikawa, Adv. Quantum Chem. 39, 261 (2001);

    Article  CAS  Google Scholar 

  61. Y. Ishikawa and M. J. Vilkas, Phys. Scr. 65, 219 (2002);

    Article  CAS  Google Scholar 

  62. M. J. Vilkas and Y. Ishikawa, Phys. Rev. A 68, 012503 (2003).

    Article  CAS  Google Scholar 

  63. F. Coester, Nucl. Phys. 7, 421 (1958);

    Article  Google Scholar 

  64. F. Coester and H. Kümmel, Nucl. Phys. 17, 477 (1960).

    Article  CAS  Google Scholar 

  65. J. Čížek, Adv. Chem. Phys. 14, 35 (1969).

    Article  Google Scholar 

  66. R.J. Bartlett, Theor. Chim. Acta 80, 71 (1991).

    Article  CAS  Google Scholar 

  67. S. Salomonson, I. Lindgren, and A.-M. Mårtensson, Phys. Scr. 21, 351 (1980);

    Article  CAS  Google Scholar 

  68. I. Lindgren and J. Morrison, Atomic Many-Body Theory, 2nd ed. (Springer Verlag, Berlin, 1986).

    Google Scholar 

  69. S.A. Blundell, W. R. Johnson, Z. W. Liu, and J. Sapirstein, Phys. Rev. A 39, 3768 (1989);

    Article  CAS  Google Scholar 

  70. S.A. Blundell, W. R. Johnson, Z. W. Liu, and J. Sapirstein, Phys. Rev. A 40, 2233 (1989);

    Article  CAS  Google Scholar 

  71. S.A. Blundell, W. R. Johnson, and J. Sapirstein, Phys. Rev. Lett. 65, 1411 (1990);

    Article  Google Scholar 

  72. S.A. Blundell, W. R. Johnson, and J. Sapirstein, Phys. Rev. A 43, 3407 (1991).

    Article  CAS  Google Scholar 

  73. Z.W. Liu and H.P. Kelly, Phys. Rev. A 43, 3305 (1991).

    Article  CAS  Google Scholar 

  74. S. Salomonson and P. Öster, Phys. Rev. A 40, 5548 (1989).

    Article  CAS  Google Scholar 

  75. S. Pal and D. Mukherjee, Adv. Quantum Chem. 20, 292 (1989).

    Google Scholar 

  76. U. Kaldor, Theor. Chim. Acta 80, 427 (1991).

    Article  CAS  Google Scholar 

  77. U. Kaldor and E. Eliav, Adv. Quantum Chem. 31, 313 (1998).

    Article  CAS  Google Scholar 

  78. S.R. Hughes and U. Kaldor, Chem. Phys. Lett. 194, 99 (1992);

    Article  CAS  Google Scholar 

  79. S.R. Hughes and U. Kaldor, Phys. Rev. A 47, 4705 (1993);

    Article  CAS  Google Scholar 

  80. S.R. Hughes and U. Kaldor, J. Chem. Phys. 99, 6773 (1993);

    Article  CAS  Google Scholar 

  81. S.R. Hughes and U. Kaldor, Intern. J. Quantum Chem. 55, 127 (1995).

    Article  CAS  Google Scholar 

  82. A. Landau, E. Eliav, and U. Kaldor, Chem. Phys. Lett. 313, 399 (1999);

    Article  CAS  Google Scholar 

  83. A. Landau, E. Eliav, and U. Kaldor, Adv. Quantum Chem. 39, 172 (2001).

    Google Scholar 

  84. J.-P. Malrieu, Ph. Durand, and J.-P. Daudey, J. Phys. A 18, 809 (1985).

    Article  CAS  Google Scholar 

  85. A. Landau, E. Eliav, Y. Ishikawa, and U. Kaldor, J. Chem. Phys. 115, 2389 (2001).

    Article  CAS  Google Scholar 

  86. H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 4, 539 (1975);

    Article  Google Scholar 

  87. H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 14, 731 (1985).

    Article  CAS  Google Scholar 

  88. E. Eliav, U. Kaldor, and Y. Ishikawa, Phys. Rev. A 53, 3050 (1996).

    Article  CAS  Google Scholar 

  89. A. Landau, E. Eliav, Y. Ishikawa, and U. Kaldor, J. Chem. Phys. 113, 9905 (2000).

    Article  CAS  Google Scholar 

  90. C.E. Moore, Atomic Energy Levels, Natl. Bur. of Stand. (U.S.) Circ. No. 467 (U.S. GPO, Washington, DC, 1948).

    Google Scholar 

  91. C.E. Moore, Ionization Potentials and Ionization Limits, Natl. Bur. Stand. (U.S.) NSRDS-NBS 34, U.S. GPO, Washington, DC, 1970.

    Google Scholar 

  92. J. L. Heully, J. P. Malrieu, and A. Zaitsevski, J. Chem. Phys. 105, 6887 (1996).

    Article  CAS  Google Scholar 

  93. A. Landau, E. Eliav, and U. Kaldor, “Mixed sector intermediate Hamiltonian coupled cluster approach: Theory and applications”, to be published.

    Google Scholar 

  94. A. Landau, E. Eliav, Y. Ishikawa, and U. Kaldor, J. Chem. Phys. 115, 6862 (2001).

    Article  CAS  Google Scholar 

  95. E. Eliav, U. Kaldor, and Y. Ishikawa, Phys. Rev. A 49, 1724 (1994).

    Article  CAS  Google Scholar 

  96. E. Eliav, U. Kaldor, and Y. Ishikawa, Phys. Rev. A 50, 1121 (1994).

    Article  CAS  Google Scholar 

  97. A.-M. Mårtensson-Pendrill, in Methods in Computational Chemistry, Vol. 5, ed. S. Wilson (Plenum Press, New York, 1992) p. 99.

    Google Scholar 

  98. W.R. Johnson, Z.W. Liu, and J. Sapirstein, At. Data Nucl. Data Tables 64, 279 (1996).

    Article  CAS  Google Scholar 

  99. S.A. Blundell, W.R. Johnson, and J. Sapirstein, Phys. Rev. D 45, 1602 (1992).

    Article  CAS  Google Scholar 

  100. P. Pyykkö, Chem. Rev. 88, 563 (1988).

    Article  Google Scholar 

  101. P.J. Hay, W.R. Wadt, L.R. Kahn, and F.W. Bobrowicz, J. Chem. Phys. 69, 984 (1978).

    Article  CAS  Google Scholar 

  102. A. Pizlo, G. Jansen, and B.A. Hess, J. Chem. Phys. 98, 3945 (1993).

    Article  CAS  Google Scholar 

  103. C. Bahrim and U. Thumm, Phys. Rev. A 61, 022722 (2000).

    Article  Google Scholar 

  104. I.I. Fabrikant, Opt. Spektrosk. 53 (1982) 223 [Opt. Spectrosc. (USSR) 53 (1982) 131].

    Google Scholar 

  105. C. Froese Fischer and D. Chen, J. Mol. Struct. 199, 61 (1989).

    Article  Google Scholar 

  106. C.H. Greene, Phys. Rev. A 42, 1405 (1990).

    Article  CAS  Google Scholar 

  107. M. Scheer, J. Thogersen, R.C. Bilodeau, C.A. Brodie, H.K. Haugen, H.H. Andersen, P. Kristensen, and T. Andersen, Phys. Rev. Lett. 80, 684 (1998).

    Article  Google Scholar 

  108. V. Pershina and D.C. Hoffman, in Theoretical Chemistry and Physics of Heavy and Superheavy Elements, U. Kaldor and S. Wilson (eds.), Kluwer, Amsterdam, in press.

    Google Scholar 

  109. O.L. Keller, Radiochim. Acta 37, 169 (1984).

    CAS  Google Scholar 

  110. See also J.B. Mann, quoted by B. Fricke and J.T. Waber, Actinides Rev. 1, 433 (1971).

    Google Scholar 

  111. V.A. Glebov, L. Kasztura, V.S. Nefedov, and B.L. Zhuikov, Radiochim. Acta 46, 117 (1989).

    CAS  Google Scholar 

  112. E. Johnson, B. Fricke, O.L. Keller, C.W. Nestor Jr., and T.C. Tucker, J. Chem. Phys. 93, 8041 (1990).

    Article  CAS  Google Scholar 

  113. J.-P. Desclaux and B. Fricke, J. Phys. 41, 943 (1980).

    Article  CAS  Google Scholar 

  114. E. Eliav, U. Kaldor, and Y. Ishikawa, Phys. Rev. Lett. 74, 1079 (1995).

    Article  CAS  Google Scholar 

  115. M. Schädel, Radiochim. Acta 70/71, 207 (1995).

    Google Scholar 

  116. E. Eliav, U. Kaldor, P. Schwerdtfeger, B.A. Hess, and Y. Ishikawa, Phys. Rev. Lett. 73, 3203 (1994).

    Article  CAS  Google Scholar 

  117. E. Eliav, U. Kaldor, and Y. Ishikawa, Phys. Rev. A 52, 2765 (1995).

    Article  CAS  Google Scholar 

  118. E. Eliav, U. Kaldor, Y. Ishikawa, M. Seth, and P. Pyykkö, Phys. Rev. A 53, 3926 (1996).

    Article  CAS  Google Scholar 

  119. F. Arnau, F. Mota, and J. J. Novoa, Chem. Phys. 166, 77 (1992).

    Article  CAS  Google Scholar 

  120. W. P. Wijesundera, Phys. Rev. A 55, 1785 (1997).

    Article  CAS  Google Scholar 

  121. D. L. Carpenter, A. M. Covington, and J. S. Thompson, Phys. Rev. A 61, 042501 (2000).

    Article  Google Scholar 

  122. S. Hofmann et al., Z. Phys. A 350, 277 (1995).

    Article  CAS  Google Scholar 

  123. S. Hofmann et al., Z. Phys. A 350, 281 (1995).

    Article  CAS  Google Scholar 

  124. S. Hofmann et al., Z. Phys. A 354, 229 (1996).

    CAS  Google Scholar 

  125. For a recent review see S. Hofmann, Rep. Progr. Phys. 61, 639 (1998).

    Article  CAS  Google Scholar 

  126. Yu. Ts. Oganessian et al., Phys. Rev. Lett. 83, 3154 (1999).

    Article  CAS  Google Scholar 

  127. Yu. Ts. Oganessian et al., Phys. Rev. C 63, 011301(R) (2000).

    Article  Google Scholar 

  128. Yu. Ts. Oganessian, Nucl. Phys. A 685, 17c (2000).

    Article  Google Scholar 

  129. A. Boboiczewski, Phys. Part. Nuclei 25, 295 (1994);

    Google Scholar 

  130. P. Möller and J.R. Nix, J. Phys. G 20, 1681 (1994);

    Article  Google Scholar 

  131. R. Smolanczuk, J. Skalski, and A. Sobiczewski, Phys. Rev. C 52, 1871 (1995).

    Article  CAS  Google Scholar 

  132. K. Rutz, M. Bender, T. Bürvenich, T. Schilling, P.G. Reinhard, J.A. Maruhn, and W. Greiner, Phys. Rev. C 56, 238 (1997).

    Article  CAS  Google Scholar 

  133. S. Ćwiok, J. Dobaczewski, P. H. Heenen, P. Magierski, and W. Nazarewicz, Nucl. Phys. A 611, 211 (1996).

    Article  Google Scholar 

  134. A. Landau, E. Eliav, Y. Ishikawa, and U. Kaldor, J. Chem. Phys. 114, 2977 (2001).

    Article  CAS  Google Scholar 

  135. M. Seth, K. Faegri, and P. Schwerdtfeger, Angew. Chem. Intern. Ed. 37, 2493 (1998).

    Article  CAS  Google Scholar 

  136. D.R. Lide (Ed.), Handbook of Chemistry and Physics, 74th Ed., (CRC Press, Boca Raton FL, 1993) .

    Google Scholar 

  137. E. Eliav, U. Kaldor, Y. Ishikawa, and P. Pyykkö, Phys. Rev. Lett. 77, 5350 (1996).

    Article  CAS  Google Scholar 

  138. P. Pyykkö, M. Tokman, and L. Labzowsky, Phys. Rev. A 57, R689 (1998);

    Article  Google Scholar 

  139. L. Labzowsky, I. Goidenko, M. Tokman, and P. Pyykkö, Phys. Rev. A 59, 2707 (1999).

    Article  CAS  Google Scholar 

  140. I. Goidenko, L. Labzowsky, E. Eliav, U. Kaldor, and P. Pyykkö, Phys. Rev. A 67, 020101(R) (2003).

    Google Scholar 

  141. W.C. Martin, R. Zalubas, and L. Hagan, Atomic Energy Levels The Rare-Earth Elements, Natl. Bur. Stand. Ref. Data Series, NBS Circ. No. 60 (U.S. GPO, Washington, DC, 1978).

    Google Scholar 

  142. E. Eliav, S. Shmuliyan, U. Kaldor, and Y. Ishikawa, J. Chem. Phys. 109, 3954 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kaldor, U., Eliav, E., Landau, A. (2004). Study of Heavy Elements by Relativistic Fock Space and Intermediate Hamiltonian Coupled Cluster Methods. In: Brändas, E.J., Kryachko, E.S. (eds) Fundamental World of Quantum Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0448-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0448-9_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6687-9

  • Online ISBN: 978-94-017-0448-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics