Skip to main content

Collisions of Atoms and Molecules in External Magnetic Fields

  • Chapter
Fundamental World of Quantum Chemistry

Abstract

Abstract A quantum mechanical theory of collisions of neutral open-shell particles in a magnetic field is described. The theory is based on the fully uncoupled spacefixed representation of the total wave function. Collisions of P-state, D-state and F-state atoms with structureless targets and 3∑-molecules with 2S-atoms are considered. The relations between the elements of the collision T-matrix and the transport cross section effective in diffusion are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. L. Migdall, J. V. Prodan, W. D. Phillips, T. H. Bergeman, and H. J. Metcalf, Phys. Rev. Lett. 54, 2596 (1985).

    Article  CAS  Google Scholar 

  2. J. D. Weinstein, R. deCarvalho, T. Guillet, B. Friedrich, and J. M. Doyle, Nature 395, 148–150 (1998)

    Article  CAS  Google Scholar 

  3. T. G. Walker and W. Happer, Rev. Mod. Phys. 69, 629–642 (1997).

    Article  CAS  Google Scholar 

  4. W. M. Huo, J. Chem. Phys. 52, 3110 (1970).

    Article  CAS  Google Scholar 

  5. H. Kato, T. Kumauchi, K. Nishizawa, M. Baba, and K. Ishikawa, J. Chem. Phys. 98, 6684 (1993).

    Article  CAS  Google Scholar 

  6. Y. Kimura, S. Kasahara, H. Kato, and M. Baba, Phys. Rev. A 67, 062717 (2003).

    Article  Google Scholar 

  7. Y.-H. Uang, R. F. Ferrante, and W. C. Stwalley, J. Chem. Phys. 74, 6267 (1981).

    Article  CAS  Google Scholar 

  8. B. Buijsse and W. J. van der Zande, Farad. Discuss. 108, 271 (1997).

    Article  CAS  Google Scholar 

  9. R. F. Snider, Int. Rev. Phys. Chem. 17, 185 (1998).

    Article  CAS  Google Scholar 

  10. A.M. Arthurs and A. Dalgarno, Proc. R. Soc. London, Ser. A 256, 540 (1960).

    Article  Google Scholar 

  11. P. Schmelcher and L. S. Cederbaum, Comments on Modern Physics, part D 2, 123 (2000).

    Google Scholar 

  12. P. Schmelcher and L. S. Cederbaum, Phys. Rev. A 37, 672 (1988).

    Article  CAS  Google Scholar 

  13. P. Schmelcher and L. S. Cederbaum, Phys. Rev. A 40, 3515 (1989).

    Article  CAS  Google Scholar 

  14. P. Schmelcher, L. S. Cederbaum, and H. D. Meyer, J. Phys. B: At. Mol. Opt. Phys. 21, L445 (1988).

    Article  Google Scholar 

  15. P. Schmelcher and L. S. Cederbaum, Phys. Rev. A 41, 4936 (1990).

    Article  CAS  Google Scholar 

  16. T. Detmer, P. Schmelcher, and L. S. Cederbaum, J. Phys. B: At. Mol. Opt. Phys. 28, 2903 (1995).

    Article  CAS  Google Scholar 

  17. T. Detmer, P. Schmelcher, F. K. Diakonos, and L. S. Cederbaum, Phys. Rev. A 56, 1825 (1997).

    Article  CAS  Google Scholar 

  18. P. Schmelcher, T. Detmer, and L. S. Cederbaum, Phys. Rev. A 61, 043411 (2000).

    Article  Google Scholar 

  19. P. Schmelcher and L. S. Cederbaum, Phys. Rev. A 64, 023410 (2001).

    Article  Google Scholar 

  20. Y. Fukuda, Chem. Phys. 118, 119 (1987).

    Article  Google Scholar 

  21. H. T. C. Stoof, J. M. V. A. Koelman, and B. J. Verhaar, Phys. Rev. A 38, 4688 (1988).

    Article  CAS  Google Scholar 

  22. S. J. J. M. F. Kokkelmans and B. J. Verhaar, Phys. Rev. A 56, 4038 (1997).

    Article  CAS  Google Scholar 

  23. E. Tiesinga, B. J. Verhaar, and H. T. C. Stoof, Phys. Rev. A 47, 4114 (1993).

    Article  CAS  Google Scholar 

  24. A. J. Moerdijk and B. J. Verhaar, Phys. Rev. A 53, R19 (1996).

    Article  Google Scholar 

  25. E. Tiesinga, C. J. Williams, P. S. Julienne, K. M. Jones, P. D. Lett, and W. D. Phillips, J. Res. Natl. Stand. Technol. 101, 505 (1996).

    Article  CAS  Google Scholar 

  26. F. H. Mies, C. J. Williams, P. S. Julienne, and M. Krauss, J. Res. Natl. Stand. Technol. 101, 521 (1996).

    Article  CAS  Google Scholar 

  27. P. J. Leo, E. Tiesinga, P. S. Julienne, D. K. Walter, S. Kadlecek, and T. G. Walker, Phys. Rev. Lett. 81, 1389 (1998).

    Article  CAS  Google Scholar 

  28. M. Houbiers, H. T. C. Stoof, W. I. McAlexander, and R. G. Hulet, Phys. Rev. A 57, R1497 (1998).

    Article  Google Scholar 

  29. J. L. Bohn, J. P. Burke Jr., C. H. Greene, H. Wang, P. L. Gould, and W. C. Stwalley, Phys. Rev. A 59, 3660 (1999).

    Article  CAS  Google Scholar 

  30. J. L. Bohn, Phys. Rev. A 61, 053409 (2000).

    Article  Google Scholar 

  31. F. H. Mies, E. Tiesinga, and P. S. Julienne, Phys. Rev. A 61, 022721 (2000).

    Article  Google Scholar 

  32. B. Zygelman and A. Dalgarno, J. Phys.. B: At. Mol. Opt. Phys. 35, L441 (2002).

    Article  Google Scholar 

  33. V. Venturi, I. B. Whittingham, P. J. Leo, and G. Peach, Phys. Rev. A 60, 4635 (1999).

    CAS  Google Scholar 

  34. P. J. Leo, V. Venturi, I. B. Whittingham, and J. Babb, Phys. Rev. A 64, 042710 (2001).

    Article  Google Scholar 

  35. B. Zygelman, to be published.

    Google Scholar 

  36. S. Appelt, A. Ben-Amar Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, Phys. Rev. A 58, 1412 (1998).

    Article  CAS  Google Scholar 

  37. R. V. Krems and A. Dalgarno, Phys. Rev. A 68, 013406 (2003).

    Article  Google Scholar 

  38. A. Derevianko, S. G. Porsev, S. Kotochigova, E. Tiesinga, and P. S. Julienne, Phys. Rev. Lett. 90, 063002 (2003).

    Article  Google Scholar 

  39. R. Santra, and C. H. Greene, Phys. Rev. A 67, 062713 (2003).

    Article  Google Scholar 

  40. V. Kokoouline, R. Santra, and C. H. Greene, Phys. Rev. Lett. 90, 253201 (2003).

    Article  Google Scholar 

  41. A. Volpi and J. L. Bohn, Phys. Rev. A 65, 052712 (2002).

    Article  Google Scholar 

  42. R. V. Krems and A. Dalgarno, J. Chem. Phys. 120, 2296 (2004).

    Article  CAS  Google Scholar 

  43. R. V. Krems, H. R. Sadeghpour, A. Dalgarno, D. Zgid, J. Klos and G. Chalasinski, Phys. Rev. A 68, 051401 (2003).

    Article  Google Scholar 

  44. Although for practical calculations one should always use this restriction of the summations, it is not necessary. Because the coupling matrix U is diagonal in the total angular momentum projection M, the elements of the scattering S-matrix between the states of different projections M will always be zero.

    Google Scholar 

  45. R. N. Zare, Angular momentum, John Wiley and Sons, Inc. (1988).

    Google Scholar 

  46. V. Aquilanti and G. Grossi, J. Chem. Phys. 73, 1165 (1980).

    Article  CAS  Google Scholar 

  47. M. Mizushima, The Theory of Rotating Diatomic molecules, John Wiley and Sons, Inc. (1975).

    Google Scholar 

  48. C. Cohen-Tannoudji, B. Diu, and F. Laloë, “Quantum Mechanics”, v. 2, Hermann (1977).

    Google Scholar 

  49. W-K. Liu, F. R. McCourt, D. E. Fitz, and D. J. Kouri, J. Chem. Phys. 71, 415 (1979).

    Article  CAS  Google Scholar 

  50. W.-K. Liu, F. R. McCourt, D. E. Fitz, and D. J. Kouri, J. Chem. Phys. 76, 5112 (1982).

    Article  CAS  Google Scholar 

  51. W.-K. Liu, F. R. McCourt, D. E. Fitz, D. J. Kouri, J. Chem. Phys. 75, 1496 (1981).

    Article  CAS  Google Scholar 

  52. D. E. Fitz, D. J. Kouri, D. Evans, and D. K. Hoffman, J. Chem. Phys. 74, 5022 (1981).

    Article  CAS  Google Scholar 

  53. W. K. Liu, A. S. Dickinson, and F. R. W. McCourt, Mol. Phys. 71, 1131 (1990) .

    Article  CAS  Google Scholar 

  54. M. J. Smith, S. Shi, H. Rabitz, and F. R. W. McCourt, J. Chem. Phys. 94, 7125 (1991).

    Article  CAS  Google Scholar 

  55. G. B. Clark and F. R. W. McCourt, Chem. Phys. Lett. 236, 229 (1995).

    Article  CAS  Google Scholar 

  56. F. A. Gianturco, N. Sanna, and S. Sema, J. Chem. Phys. 98, 3833 (1993).

    Article  CAS  Google Scholar 

  57. F. A. Gianturco, S. Sema, and A. V. Storozhev, Comp. Phys. Commun. 103, 251 (1997).

    Article  CAS  Google Scholar 

  58. O. H. Crawford, A. Dalgarno, and P.B. Hays, Mol. Phys. 13, 181 (1967).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Krems, R., Dalgarno, A. (2004). Collisions of Atoms and Molecules in External Magnetic Fields. In: Brändas, E.J., Kryachko, E.S. (eds) Fundamental World of Quantum Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0448-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0448-9_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6687-9

  • Online ISBN: 978-94-017-0448-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics