Skip to main content

Quantum Chemistry, Localization, Superconductivity, and Mott-Hubbard U

  • Chapter
Fundamental World of Quantum Chemistry
  • 476 Accesses

Abstract

A model for superconductivity and delocalisation of electrons based on fundamental principles is discussed and critically compared to other models. Mott insulators contain one electron per site and have a spin density wave (SDW) ground state. Local electron pair formation on alternant sites is possible by disproportionation, if Mott-Hubbard U≈ ΔG° < 0. A non-degenerate charge density wave (CDW) state is formed. Oxidation state is characterized by geometry and integrated charge. Transfer of electrons is therefore coupled to nuclear motion. An electron pair can move to adjacent site with or without activation energy. The activation barrier is absent if the geometry change is small and the inter-site electronic coupling via the SDW state sufficiently large. A degenerate, delocalised ground state is formed with an energy gap, zero resistivity and currents in a magnetic field. Whether the electrons are localised or delocalised depends on the relative values of coupling and reorganization energy, and can be calculated without involving U.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Bloch, Z. Phys. 57, 545 (1929).

    Article  CAS  Google Scholar 

  2. N.F. Mott, Metal-Insulator Transitions (Taylor & Francis, 1990); Conduction in Non-Crystalline Materials (Clarendon Press, 1987).

    Google Scholar 

  3. B.H. Brandow, Adv. Phys 26, 651–808 (1977).

    Article  CAS  Google Scholar 

  4. B. Brandow, Phys. Reports 296, 1–63 (1998).

    Article  CAS  Google Scholar 

  5. J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Article  CAS  Google Scholar 

  6. “..the underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble”; P.A.M. Dirac, Proc. Roy. Soc. London A 123, 714–733 (1929).

    Article  CAS  Google Scholar 

  7. P.-O. Löwdin, Phys. Rev. 97, 1474 (1956); Adv. Phys. 5, 1 (1962); Revs, Mod., Phys. 3, 969 (1962).

    Article  Google Scholar 

  8. P. Fulde, Electron Correlation in Molecules and Solids, Springer Series in SolidState Sciences, (Springer Verlag, 1995)

    Book  Google Scholar 

  9. K. Doll, M. Dolg, P. Fulde, and H. Stoll, Phys. Rev. B 55, 10282–10288 (1997); A. Shukla, M. Dolg, and P. Fulde, Phys. Rev. B 60, 5211–5216 (1999).

    Article  CAS  Google Scholar 

  10. Y. Yanase, J. Takanobu, T. Nomura, H. Ikeda, T. Hotta, and K. Yamada, Phys. Reports 387, 1–149 (2003).

    Article  CAS  Google Scholar 

  11. S. Larsson and A. Klimkāns, Molecular Cryst. and Liquid Cryst. 355, 217–229 (2001)

    Article  CAS  Google Scholar 

  12. S. Larsson and A. Klimkāns, Int. J. Quant. Chem. 80, 713–720 (2000).

    Article  CAS  Google Scholar 

  13. S. Larsson, Chem. Phys. 236, 133–150 (1998); S. Larsson, Chem. Phys. Lett. 157, 403–408 (1989).

    Article  CAS  Google Scholar 

  14. L.N. Cooper, Phys. Rev. 104, 1189–1190 (1956).

    Article  CAS  Google Scholar 

  15. H. Fröhlich, Phys Rev 79, 845 (1950).

    Article  Google Scholar 

  16. R.A. Marcus, J. Chem. Phys. 24, 966, 979 (1956)

    Article  CAS  Google Scholar 

  17. R.A. Marcus, Adv. Phys. Chem. 15, 51 (1964).

    Google Scholar 

  18. N.S. Hush, Chem. Phys.. 1975, 10, 361 (1975).

    Article  CAS  Google Scholar 

  19. K. Prassides, P.N. Schatz, K.Y. Wong, and P. Day, J. Phys. Chem. 90, 5588–5597 (1986).

    Article  CAS  Google Scholar 

  20. A. Klimkāns and S. Larsson, Int. J. Quant. Chem., 77, 211–220 (2000).

    Article  Google Scholar 

  21. R.R. Heikes and W.D. Johnston, J. Chem. Phys. 26, 582 (1957)

    Article  Google Scholar 

  22. M. Pai and J.M. Honig,. J. Solid State Chem. 40, 59 (1981).

    Article  CAS  Google Scholar 

  23. P.S. Bagus and H.F. Schaefer III, J. Chem. Phys. 56, 224–226 (1972)

    Article  CAS  Google Scholar 

  24. L.C. Snyder, J. Chem. Phys. 55, 95–99 (1971).

    Article  CAS  Google Scholar 

  25. P.-O. Löwdin, Phys. Rev. 97, 1490, 1509 (1956); PUHF

    Article  Google Scholar 

  26. I. Hubac and M. Svrcek, Int. J. Quant. Chem. 33, 403 (1988).

    Article  CAS  Google Scholar 

  27. A.W. Sleight, Science 242, 1519–1527 (1988)

    Article  CAS  Google Scholar 

  28. A.W. Sleight, Acc. Chem. Res. 28, 103–108 (1995)

    Article  CAS  Google Scholar 

  29. D.E. Cox and A.W. Sleight, Solid State Commun. 19, 969–973 (1976)

    Article  CAS  Google Scholar 

  30. B. Batlogg, R.J. Cava, L.F. Schneemeyer, and G.P. Espinosa, IBM Jour. Res. Develop. 33, 208–214 (1989).

    Article  CAS  Google Scholar 

  31. J.G. Bednorz and K.A. Müller, Z. Phys B 64, 189 (1986)

    Article  CAS  Google Scholar 

  32. C.W. Chu, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, Phys. Rev. Lett. 58, 405 (1987)

    Article  CAS  Google Scholar 

  33. M.K. Wu, J.R. Ashburn, P.H. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu, Phys. Rev. Lett. 58, 908 (1987).

    Article  CAS  Google Scholar 

  34. A.M. Gabovich and A.I. Voitenko, Low Temp. Phys. 26, 305–330 (2000).

    Article  CAS  Google Scholar 

  35. R. Keller, J. Fenner, W.B. Holtzapfel, Mater. Res. Bull. 9, 1363–1370 (1974)

    Article  CAS  Google Scholar 

  36. P. Day, C. Vettier, G. Parisot, Inorg. Chem. 17, 2319–2320 (1978)

    Article  CAS  Google Scholar 

  37. W. Denner, H. Schulz, and H. D’Amour, Acta Cryst. A 35, 360 (1979)

    Google Scholar 

  38. N. Kojima, H. Kitagawa, T. Ban, F. Amita and M. Nakahara, Solid State Commun. 73, 743–745 (1990)

    Article  CAS  Google Scholar 

  39. H. Kitagawa, H. Sato, N. Kojima, T. Kikegawa, and O. Shimomura, Solid State Commun. 78, 989–995 (1991)

    Article  CAS  Google Scholar 

  40. N. Kojima and H. Kitagawa, J. Chem. Soc. Dalton Trans. 1994, 327–331 (1994).

    Article  Google Scholar 

  41. J.E. Han and O. Gunnarsson, Physica B 292, 196–207 (2000)

    Article  CAS  Google Scholar 

  42. O. Gunnarsson, Nature 408, 528–529 (2000); J.E. Han and O. Gunnarsson, Phys. Rev. Letters 90, No 167006 (2003).

    Article  CAS  Google Scholar 

  43. S. Larsson and L. Rodríguez-Monge, Int. J. Quant. Chem. Symp. 27, 655–665 (1993).

    Article  CAS  Google Scholar 

  44. J.-L. Calais and G. Sperber, Int. J. Quant. Chem. 7, 501–520 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Larsson, S. (2004). Quantum Chemistry, Localization, Superconductivity, and Mott-Hubbard U. In: Brändas, E.J., Kryachko, E.S. (eds) Fundamental World of Quantum Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0448-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0448-9_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6687-9

  • Online ISBN: 978-94-017-0448-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics