Skip to main content

Multiphoton Techniques for the Detection of Atoms

  • Chapter
Book cover Fast Electrical and Optical Measurements

Part of the book series: NATO ASI Series ((NSSE,volume 108/109))

  • 661 Accesses

Abstract

Multiphoton processes have been studied since the pulsed ruby laser was first invented in the early 1960’s. However, it is only recently that the development of lasers has progressed to the point that quantitative multiphoton experiments can be made with the confidence that the results can be reproduced in different laboratories. In particular, high-power dye lasers pumped by either YAG or excimer lasers have opened the door to new techniques for the detection of atoms and molecules. Thus it has only been in the last five years that multiphoton processes have been seriously considered as a sensitive and quantitative detection technique for atoms and molecules. In that time we have seen an explosion of new results, particularly in the area of detecting atomic species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. P. Ausschnit, G. C. Bjorklund, and R. R. Freeman, Appl. Phys. Lett. 33 54 (1978).

    Article  Google Scholar 

  2. J. R. Ackerhalt, Phys. Rev. Lett. 46, 922 (1981).

    Article  Google Scholar 

  3. M. Alden, H. Edner, P. Grafstrom, and S. Svanberg, Opt. Comm. 42, 244 (1982).

    Article  Google Scholar 

  4. G. C. Bjorklund, C. P. Ausschnitt, R. R. Freeman, and R. H. Storz, Appl. Phys. Lett. 33, 54 (1978).

    Article  Google Scholar 

  5. W. K. Bischel, J. Bokor, D. J. Kligler, and C. K. Rhodes, IEEE J.Q.E. QE-15, 380 (1979).

    Article  Google Scholar 

  6. P. Brewer, P. Das, G. Ondrey, and R. Bersahn, J. Chem. Phys. 79, 720 (1983).

    Article  Google Scholar 

  7. J. Bokor, R. R. Freeman, J. C. White, and R. H. Storz, Phys. Rev. A24, 6121 (1981).

    Google Scholar 

  8. W. K. Bischel, P. J. Kelly, and C. K. Rhodes, Phys. Rev. A13, 1817 (1976).

    Google Scholar 

  9. W. K. Bischel, B. E. Perry, and D. R. Crosley, Chem. Phys. Lett. 82, 85 (1981).

    Article  Google Scholar 

  10. W. K. Bischel, B. E. Perry, and D. R. Crosley, Appl. Opt. 21, 1419 (1982).

    Article  Google Scholar 

  11. D. J. Brink and D. Proch, Opt. Lett. 7 494 (1982).

    Article  Google Scholar 

  12. P. Brewer, N. Van Veen, and R. Bersohn, Chem. Phys. Lett. 91, 126 (1982).

    Article  Google Scholar 

  13. J. C. Cummings and D. P. Aeschliman, Opt. Comm. 31, 165 (1979).

    Article  Google Scholar 

  14. C. J. Dasch and J. J. Bechtel, Opt. Lett. 6, 36 (1981).

    Article  Google Scholar 

  15. M. Dagenais, J. W. C. Johns, and A. R. W. McKellar, Can. J. Phys. 54 1438 (1976) .

    Article  Google Scholar 

  16. P. Das, G. Ondrey, N. Van Veen, and R. Bersohn, J. Chem. Phys. 79, 724 (1983).

    Article  Google Scholar 

  17. P. B. Davies and D. K. Russell, Chem. Phys. Lett. 67 440 (1979).

    Article  Google Scholar 

  18. D. Eimerl, R. S. Hargrove, and J. A. Paisner, Phys. Rev. Lett. 46, 651 (1981).

    Article  Google Scholar 

  19. P. Esherick and A. Owyoung, “High Resolution Stimulated Raman Gain Spectroscopy”; in Advances in Infrared and Raman Spectroscopy, Vol. 9 (Ed. R. J. H. Clark and R. E. Hester, Heyden and Sons, Ltd., London, 1982).

    Google Scholar 

  20. J. Gelbwachs, Appl. Opt. 15, 2654 (1976).

    Article  Google Scholar 

  21. G. Grynberg, B. Cagnac, and F. Biraben, “Multiphoton Resonant Processes in Atoms,” in Coherent Nonlinear Optics (ed. M. S. Feld and V. S. Letokhov, Springer-Verlag, Berlin, 1980).

    Google Scholar 

  22. J. E. M. Goldsmith, Opt. Lett. 7, 437 (1982).

    Article  Google Scholar 

  23. J. E. M. Goldsmith, J. Chem. Phys. 78, 1610 (1983).

    Article  Google Scholar 

  24. T. W. Hansch, S. A. Lee, R. Wallenstein, and C. Wieman, Phys. Rev. Lett. 34, 307 (1975).

    Article  Google Scholar 

  25. M. Heaven, T. A. Miller, R. R. Freeman, J. C. White, and J. Bokor, J. Chem. Phys. Lett. 86, 458 (1982).

    Article  Google Scholar 

  26. G. S. Hurst, M. G. Payne, S. D. Kramer, and J. P. Young, Rev. Mod. Phys. 51, 767 (1979).

    Article  Google Scholar 

  27. W. Huoan R. L. Jaffe, “Ab Initio Calculation of the TwoPhoton Absorption Cross Section of the X1∑<Stack>g +</Stack> → (E1 F)1∑<Stack>g +</Stack> in H2, Chem. Phys. Lett. (to be published, 1983).

    Google Scholar 

  28. H. Kogelnik and T. Li, Appl. Opt. 5, 1550 (1965).

    Article  Google Scholar 

  29. J. V. V. Kasper, C. R. Pollock, R. F. Curl Jr., and F. K. Tittel, Chem. Phys. Lett. 77, 211 (1981).

    Article  Google Scholar 

  30. G. A. Laguna and W. H. Beattie, Chem. Phys. Lett. 88, 439 (1982).

    Article  Google Scholar 

  31. M. D. Levenson, Introduction to Nonlinear Laser Spectroscopy (Academic Press, 1982).

    Google Scholar 

  32. R. P. Lucht, J. T. Salmon, G.B. King, D. W. Sweeney, and N. M. Laurendeau, Opt. Lett. 7 365 (1983).

    Article  Google Scholar 

  33. C. H. Muller III, D. R. Eames, and K. H. Burrell, Bull. Am. Phys. Soc. 26, 1031 (1981).

    Google Scholar 

  34. T. J. McIlrath, R. Hudson, A. Aikin, and T. D. Wilkerson, Appl. Opt. 18, 316 (1979).

    Article  Google Scholar 

  35. A. Miziolek, “Collisionally Induced Flame Emissions Following Oxygen Atom Two-Photon Excitation”, paper WK5, 1983 Annual Meeting of the Optical Society of America, New Orleans, October 17–20, 1983.

    Google Scholar 

  36. J. Morelles, D. Normand, and G. Petite, “Nonresonant Multiphoton Ionization of Atoms,” in Atomic and Molecular Physics, Vol. 18 (Academic Press, 1982).

    Google Scholar 

  37. D. S. Moore, Chem. Phys. Lett. 89, 131 (1983).

    Article  Google Scholar 

  38. B. R. Marx, J. Sumons, and L. Allen, J. Phys. B11, L273 (1978).

    Google Scholar 

  39. K. Omidvar, Phys. Rev. A22, 1576 (1980). (Relative intensities are wrong; multiplet matrix elements are probably correct.)

    Google Scholar 

  40. J A. Paisner and R. S. Hargrove, in Digest of Conference on Laser Engineering and Applications (Optical Society of America, Washington D.C., 1981), postdeadline paper II-4.

    Google Scholar 

  41. M. S. Pindzola, Phys. Rev. A17, 1021 (1978).

    Google Scholar 

  42. H. Schlossberg, J.A.P. 47, 2044 (1976).

    Google Scholar 

  43. C. R. Quick and D. S. Moore, J. Chem. Phys. 79 759 (1983).

    Article  Google Scholar 

  44. A. C. Staton and C. E. Kolb, J. Chem. Phys. 72, 6637 (1980).

    Article  Google Scholar 

  45. K. Schofield and M. Steinberg, Opt. Eng. 20, 501 (1981).

    Article  Google Scholar 

  46. R. E. Teets and J. H. Bechtel, Opt. Lett. 6, 458 (1981).

    Article  Google Scholar 

  47. L. Vriens, Opt. Comm. 11 396 (1974).

    Article  Google Scholar 

  48. W. L. Wiese, M. W. Smith, and B. M. Glennon, “Atomic Transition Probabilities,” Nat. Stand. Ref. Data Ser. Nat. Bur. Stand. (1966).

    Google Scholar 

  49. V. Wilke and W. Schmidt, Appl. Phys. 16, 151 (1978)

    Article  Google Scholar 

  50. V. Wilke and W. Schmidt, Appl. Phys. 18, 177 (1979).

    Article  Google Scholar 

  51. J. Wormhoudt, A. C. Stanton, and J. Silver, “Techniques for Characterization of Gas Phase Species in Plasma Etching and Vapor Deposition Processes”, to be published in Spectroscopic Characterization Techniques for Semiconductor Technology Vol. 452 (Proceeding of SPIE, 1983).

    Google Scholar 

  52. H. Zacharias, H. Rottke, J. Danon, and K. H. Welge, Opt. Comm. 37, 15 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bischel, W.K. (1986). Multiphoton Techniques for the Detection of Atoms. In: Thompson, J.E., Luessen, L.H. (eds) Fast Electrical and Optical Measurements. NATO ASI Series, vol 108/109. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0445-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0445-8_37

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-0447-2

  • Online ISBN: 978-94-017-0445-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics