Skip to main content

Abstract

Unstable and often extreme environments have always been a feature of life on Earth. Droughts, floods, and temperature extremes lead to nutritional inadequacy especially of the young. Taking into account the energy consequences of stressful environments, the free-radical theory of aging becomes a general stress theory of aging, recently expressed as a deprivation-syndrome theory, which highlights resource shortages. This ecological scenario contrasts with the more benign protected circumstances of the laboratory, domesticated and island populations, and of the well-nourished humans of the modem era. Some other evolutionary theories of aging, especially the mutation accumulation and antagonistic pleiotropy theories, appear to be implicitly assuming, predominantly protected environments. Empirical work on Drosophila populations from Lower Nahal Oren, Israel, by Nevo and collaborators, are in accord with the stress theory of aging. More information incorporating stress levels in the wild is a high priority.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams P.A. and Ludwig D. 1995. Optimality theory, Gompertz law, and the disposable soma theory of senescence. Evolution 49, 1055–1066.

    Article  Google Scholar 

  • Akashi H. and Gojobori T. 2002. Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc Natl Acad Aci USA 99, 36953700.

    Google Scholar 

  • Anbar A.D. and Knoll A.K. 2002. Proterozoic ocean chemistry and evolution: a bioinorganic bridge. Science 297, 1137–1142.

    Article  PubMed  CAS  Google Scholar 

  • Arking, R. 1998. Biology of Aging. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Arking, R. 2001. Gene expression and regulation in the extended longevity phenotypes of Drosophila. Ann NY Acad Sci. 928, 157–167.

    Article  PubMed  CAS  Google Scholar 

  • Arking R., Buck S., Novoseltev V.N., Hwangbo D.S. and Lane M. 2002. Genomic plasticity, energy allocations, and the extended longevity pheotypes of Drosophila. Age Res Rev. 1, 202–228.

    Google Scholar 

  • Austad S.N. 1993. Retarded senescence in an insular population of Virginia opossums (Didelphis virginiana). J Zool Lond. 229, 695–708.

    Article  Google Scholar 

  • Austad S.N. 1997. Why we age. John Wiley, New York.

    Google Scholar 

  • Beckman K.B. and Ames B.N. 1998. The free radical theory of aging matures. Physiol Rev. 78, 547–581.

    PubMed  CAS  Google Scholar 

  • Boriss H. and Loeschcke V. 2003. Complexity theory provides metaphors for a better understanding of biological processes. In: The Significance of Complexity, Buhl H. and van Kooten Neikerk eds. Ashgate, London.

    Google Scholar 

  • Boulétreau J. 1978. Ovarian activity and reproductive potential in a natural population of Drosophila melanogaster. Oecologia 33, 319–342.

    Article  Google Scholar 

  • Boulétreau-Merle J., Fouillet P. and Terrier O. 1992. Clinal and seasonal variations in initial retention of virgin Drosophila melanaster females as a strategy for fitness. Evol Ecol. 6, 223–242.

    Article  Google Scholar 

  • Briscoe D.A., Malpica J.M., Robertson A., Smith G.J., Frankham R., Banks R.G. and Barker J.S.F. 1992. Rapid loss of genetic variation in large captive populations of Drosophila flies: implications for the management of captive populations. Consery Biol. 6, 416–425.

    Article  Google Scholar 

  • Brown J.H., Marquet P.A. and Taper M.L. 1993. Evolution of body size. Consequences of an energetic definition of fitness. Amer Natl. 142, 373–384.

    Google Scholar 

  • Clark W.R. 1999. The means to an end: The Biological Basis of Aging and Death. Oxford, University Press, Oxford.

    Google Scholar 

  • Coleman J.S., Heckathom S.A. and Hallberg R.L. 1995. Heat-shock proteins and thermotolerance: linking ecological and molecular perspectives. Trends Ecol Evol. 10, 305–306.

    Article  PubMed  CAS  Google Scholar 

  • Crow J.F. 1997. The high spontaneous mutation rate: Is it a health risk? Proc Natl Acad Sci. USA. 94, 8380–8386.

    Article  CAS  Google Scholar 

  • Cypser J.R. and Johnson T.E. 2002. Multiple stressors in Caenorhabditis elegans induce stress hormesis extended longevity. J Gerontol Biol Sci. 57A, B109 - B114.

    Article  Google Scholar 

  • Darwin C. 1859. On The Origin of Species by Natural Selection. J Murray, London.

    Google Scholar 

  • Donahaye E. 1993. Biological differences between strains of Tribolium castaneum selected for resistance to hypoxia and hypercarbia, and the unelected strain. Physiol Entomol. 18, 247–250.

    Article  Google Scholar 

  • Emlen J.M., Freeman D.C., Mills A. and Graham J.H. 1998. How organisms do the right thing: the attractor hypothesis. Chaos. 8, 717–726.

    Article  PubMed  Google Scholar 

  • Feder M.E. 1999. Engineering candidate genes in studies of adaptation: the heat-shock protein Hsp70 in Drosophila melanogaster. Amer Natl. 154, 555–566.

    Google Scholar 

  • Finkel T. and Holbrook N.J. 2000. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247.

    Article  PubMed  CAS  Google Scholar 

  • Frankham R. 1995. Conservation genetics. Ann Rev Genet. 29, 305–327.

    Article  PubMed  CAS  Google Scholar 

  • Frankham R. and Loebel D.A. 1992. Modelling problems in conservation genetics using captive Drosophila populations: rapid genetic adaptation to captivity. Zoo Biology 11, 333–342.

    Article  Google Scholar 

  • Gehring W.J. and Wenner R. 1995. Heat shock protein synthesis and thermotolerance in

    Google Scholar 

  • Cataglyphis, an ant from the Sahara Desert. Proc Natl Acad Sci. USA 92, 2994–2998. Hamilton W.D. 2001. Narrow roads of gene land. Vol. 2. Evolution of sex. Oxford University Press, Oxford.

    Google Scholar 

  • Harman D. 1956. Aging–a theory based on free radical and radiation chemistry. J Gerontol. 11, 298–300.

    Article  PubMed  CAS  Google Scholar 

  • Harman D. 2001 Aging: overview. Ann NY Acad Sci. 928, 1–21.

    Article  PubMed  CAS  Google Scholar 

  • Heininger K. 2001. The deprivation syndrome is the driving force of phylogeny, ontogeny and oncogeny. Rev Neurosciences 12, 217–287.

    CAS  Google Scholar 

  • Heininger K. 2002. Aging is a deprivation syndrome driven by a germ-soma conflict. Ageing Res Rev. 33, 481–536.

    Article  Google Scholar 

  • Hoffmann A.A., Hallas R., Sinclair C. and Partridge L. 2001. Rapid loss of stress resistance in Drosophila melanogaster under adaptation to laboratory culture. Evolution 55, 436–438.

    PubMed  CAS  Google Scholar 

  • Hoffmann A.A. and Parsons P.A. 1991. Evolutionary genetics and environmental stress. Oxford University Press, Oxford.

    Google Scholar 

  • Hoffmann A.A. and Parsons P.A. 1993. Selection for adult desiccation resistance in Drosophila melanogaster: fitness components, larval resistance and stress correlations. Biol J Linn Soc. 48, 43–54.

    Article  Google Scholar 

  • Hosgood S.M.W. and Parsons P.A. 1968. Polymorphism in natural populations of Drosophila for the ability to withstand temperature shocks. Experientia 24, 727–729.

    Article  PubMed  CAS  Google Scholar 

  • Hughes K.A., Alipaz J.A., Drnevich S.M. and Reynolds R.M. 2002. A test of evolutionary theories of aging. Proc Natl Acad Sci. USA 99, 14286–14291.

    Google Scholar 

  • Kauffman, S.A. 1993. The Origins of Order: Self-organization and Selection in Evolution. Oxford University Press, New York.

    Google Scholar 

  • Kerr R.A. 2002. Could poor nutrition have held life back? Science 297, 1104–1105.

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood T.B.L. 1997. The origins of human ageing. Phil Trans R Soc Lond B. 352, 1765 1772.

    Google Scholar 

  • Kirkwood T.B.L. and Austad S.N. 2000. Why do we age? Nature 408, 233–238.

    Article  CAS  Google Scholar 

  • Kohane M.J. 1988. Stress, altered energy availability and larval fitness in Drosophila melanogaster. Heredity 60, 273–281.

    Article  PubMed  Google Scholar 

  • Kohane M.J. and Parsons P.A. 1988. Domestication: evolutionary change under stress. Evol Biol. 23, 31–48.

    Article  Google Scholar 

  • Korol A., Rashkovetsky E., Iliadi K., Michalak P., Ronin Y. and Nevo E. 2000. Nonrandom mating in Drosophila melanogaster laboratory populations derived from closely adjacent ecologically contrasting slopes at “Evolution Canyon”. Proc Natl Acad Sci USA 97, 12637–12642.

    Article  PubMed  Google Scholar 

  • Krebs R.A. and Feder M.E. 1997. Natural variation in the expression of the heat-shock protein Hsp 70 in a population of Drosophila melanogaster and its correlation with tolerance of ecologically relevant thermal stress. Evolution. 51, 173–179.

    Article  Google Scholar 

  • Krebs R.A. and Loeschcke V. 1994. Costs and benefits of activation of the heat-shock response in Drosophila melanogaster. Funct Ecol. 8, 730–737.

    Article  Google Scholar 

  • Krebs R.A., Roberts S.P., Bettencourt B.R. and Feder M.E. 2001. Changes in thermotolerance and Hsp 70 expression with domestication in Drosophila melanogaster. J Evol Biol. 14, 75–82.

    Article  CAS  Google Scholar 

  • Lane N. 2002. Oxygen: The molecule that made the World. Oxford University Press, Oxford. Lynch M., Blanchard J., Houle D., Kibota T., Schultz S., Vassilieva L. and Willis J. 1999. Perspective: spontaneous deleterious mutation. Evolution 53, 645–663.

    Google Scholar 

  • Michalak P., Minkov I., Helin A., Lerman D.N., Bettencourt B.R., Feder M.E., Korol A.B. and Nevo E. 2001. Genetic evidence for adaptation-driven incipient speciation of Drosophila melanogaster along a microclimatic contrast in Evolution Canyon, Israel. Proc Natl Acad Sci USA 23, 13195–13200.

    Google Scholar 

  • Muller H.J. 1950. Our load of mutations. Am J Hum Genet. 2, 111–176.

    PubMed  CAS  Google Scholar 

  • Nevo E., Filippucci M.G. and Beiles A. 1994. Genetic polymorphisme in subterranean mammals (Spalax ehrenbergi superspecies) in the Near East revisited: Patterns and theory. Heredity 72, 465–497.

    Google Scholar 

  • Nevo E., Rashkovetsky E., Pavlicek T. and Korol A. 1998. A complex adaptive syndrome in Drosophila caused by microclimatic contrasts. Heredity 80, 9–16.

    Article  PubMed  Google Scholar 

  • Novoseltsev V.N., Novoseltseva J. and Yashin A.I. 2001. A homeostatic model of oxidative damage explains paradoxes observed in earlier aging experiments: a fusion and extension of older theories of aging. Biogerontology 2, 127–138.

    Article  PubMed  CAS  Google Scholar 

  • Odum E.P., Finn J.T. and Franz E.H. 1979. Perturbation theory and the subsidy stress gradient. BioScience 29, 349–352.

    Article  Google Scholar 

  • Olshansky S.J., Cames B.A. and Cassel C. 1990. In search of Methuselah: estimating the upper limits to human longevity. Science 2508, 634–640.

    Article  Google Scholar 

  • Osmond C. B., Austin M.P., Berry J.A., Billings W.D., Boyer J.S., Dacey J.W.H. et al. 1987. Stress physiology and the distribution of plants. BioScience 37, 38–48.

    Article  Google Scholar 

  • Parsons P.A. 1974. Genetics of resistance to environmental stresses in Drosophila populations. Am Rev Genet. 7, 239–265.

    Article  Google Scholar 

  • Parsons P.A. 1978. The genetics of aging in optimal and stressful environments. Exp Gerontol. 13, 357–363.

    Article  PubMed  CAS  Google Scholar 

  • Parsons P.A. 1982. Evolutionary ecology of Australian Drosophila: a species analysis. Evol Biol. 14, 297–350.

    Google Scholar 

  • Parsons P.A. 1987. Evolutionary rates under environmental stress. Evol Biol. 21, 311–347. Parsons P.A. 1992. Evolutionary adaptation and stress: the fitness gradient. Evol Biol. 26, 191–223.

    Google Scholar 

  • Parsons P.A. 1995. Inherited stress resistance and longevity: a stress theory of ageing. Heredity 75, 216–221.

    Article  PubMed  Google Scholar 

  • Parsons P.A. 1996a. The limit to human longevity: an approach through a stress theory of ageing. Mech Age Dev. 87, 211–218.

    Article  CAS  Google Scholar 

  • Parsons P.A. 1996b. Stress, resources, energy balances, and evolutionary change. Evol BioL 29, 39–72.

    CAS  Google Scholar 

  • Parsons P.A. 1997. Evolutionary change: a phenomenon of stressful environments. In: The Web of Life Vol. I., Padmanaban G., Biswas M., Shaila M.S. and Vishveshwara S. eds., Harwood Academic Publishers, Amsterdam.

    Google Scholar 

  • Parsons P.A. 2000. Caloric restriction, metabolic efficiency and hormesis. Human Exp Toxicol 19, 345–347.

    Article  CAS  Google Scholar 

  • Parsons P.A. 2002a. Life span: does the limit to survival depend upon metabolic efficiency under stress. Biogerontol. 3, 233–241.

    Article  CAS  Google Scholar 

  • Parsons P.A. 2002b. Aging: the fitness-stress continuum and genetic variability. Exp Aging Res. 28, 1–13.

    Article  Google Scholar 

  • Parsons P.A. 2003. From the stress theory of aging to energetic and evolutionary expectations for longevity. Biogerontol. 4 (in press).

    Google Scholar 

  • Price E.O. 1984. Behavioral aspects of animal domestication. Quart Rev Biol. 39, 1–32.

    Google Scholar 

  • Rose M.R., Vu L.N., Pank S.U. and Groves J.L.Jr. 1992. Selection on stress resistance increases longevity in Drosophila melanogaster. Exp Gerontol. 27, 241–250.

    Article  PubMed  CAS  Google Scholar 

  • Rosewell J. and Shorrocks B. 1987. The implication of survival rates in natural populations of

    Google Scholar 

  • Drosophila: capture-recapture experiments on domestic species. Biol J Linn Soc. Lond 32, 373–384.

    Google Scholar 

  • Shabalina S.A, Yampolsky L.Y. and Kondrashov A.S. 1997. Rapid decline of fitness in panmitic populations of Drosophila melanogaster maintained under relaxed natural selection. Proc Natl Acad Sci USA 94, 13034–13039.

    Article  PubMed  CAS  Google Scholar 

  • Smith-Sonnebom J. 1993. The role of the “stress protein response” in hormesis. BELLE Newsletter 1, 4–9.

    Google Scholar 

  • Sorensen J.G. and Loeschcke V. 2002. Decreased heat-shock resistance and down-regulation of Hsp70 expression with increasing age in adult Drosophila melanogaster. Funct Ecol. 16, 379–384.

    Article  Google Scholar 

  • Stanley S.M., Parsons P.A., Spence G.E. and Weber L. 1980. Resistance of species of the

    Google Scholar 

  • Drosophila melanogaster subgroup to environmental extremes. Aust J Zool. 28, 413–421. Tatar M. 1999. Evolution of senescence: longevity and the expression of heat shock proteins.

    Google Scholar 

  • Amer Zool. 39, 920–927.

    Google Scholar 

  • Toupance B., Godelle B., Gouyon P.H. and Schachter F. 1998. A model for antagonistic pleiotropic gene action for mortality and advanced age. Am J Hum Genet. 62, 1525–1534.

    Article  PubMed  CAS  Google Scholar 

  • Toussaint O., Remade J., Dierick J.F., Pascal T., Frippiat C., Royer V. and Chainiaux F. 2002. Approach of evolutionary theories of ageing, stress, senescence-like phenotypes, calorie restriction and hormesis from the point of view of far-from-equilibrium theormodynamics Mech Ageing Dev. 138, 937–946.

    Google Scholar 

  • Van Valen L.M. 1991. Biotal evolution: A manifesto. Evol Theory 10, 1–13.

    Google Scholar 

  • Vaupel J.W. 1988. Inherited frailty and longevity. Demography 25, 277–287.

    Article  PubMed  CAS  Google Scholar 

  • White T.C.R. 1993. The Inadequate Environment: Nitrogen and the Abundance of Animals. Springer-Verlag, Berlin.

    Google Scholar 

  • Williams G.C. 1957. Pleiotropy, natural selection and the evolution of senescence. Evolution 11, 398–411.

    Article  Google Scholar 

  • Williams G.C. and Nesse R.M. 1991. The dawn of Darwinian medicine. Quart Rev Biol. 66, 1–22.

    Article  PubMed  CAS  Google Scholar 

  • Yashin A I and Iachine I. 1995. How long can humans live? Lower bound for biological limit of human longevity calculated from Danish twin data using correlated frailty method. Mech Ageing Dev. 80, 147–169.

    Article  PubMed  CAS  Google Scholar 

  • Yu B.P. and Chung H.Y. 2001. Stress resistance by caloric restriction for longevity. Ann NY Acad Sci. 928, 39–47.

    Article  PubMed  CAS  Google Scholar 

  • Zera A.J. and Harshman L.G. 2001. The physiology of life history trade-offs in animals. Ann Rev Ecol Syst. 32, 95–126.

    Article  Google Scholar 

  • Zouros E., Loukas M., Economopolous A. and Mazomenos B. 1982. Selection at the alcohol dehydrogenase locus of the olive fruit fly Dacus oleae under artificial rearing. Heredity 48, 169–185.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Parsons, P.A. (2004). Aging and the Environment: The Stress Theories. In: Wasser, S.P. (eds) Evolutionary Theory and Processes: Modern Horizons. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0443-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0443-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6457-8

  • Online ISBN: 978-94-017-0443-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics