Skip to main content

Pseudogenes are Not Junk DNA

  • Chapter

Abstract

We describe some unexpected features of pseudogenes in diverse organisms that are inconsistent with the traditional view that considers pseudogenes as nonfunctional sequences of genomic DNA (“junk” DNA) not subject to natural selection. Pseudogenes are often evolutionarily conserved and transcriptionally active. Moreover, there is evidence indicating that some pseudogenes engage in regulation of gene expression and generation of genetic diversity. Pseudogene patterns of nucleotide variability evince that not all pseudogene mutations are selectively neutral and, thus, do not all have equal probability of becoming fixed in the population. A pseudogene that has arisen by duplication or retroposition may, at first, not be subject to natural selection, if the source gene remains functional. Therefore, alleles of the pseudogene will accumulate mutations, including disabling mutations, over time. But a mutant allele that incorporates a new function may be favored by natural selection and will have enhanced probability of becoming fixed in the population. Thus, some pseudogenes that have lost the original function may have acquired new ones. A review of the evidence leads to the conclusion that pseudogenes are important components of genomes, representing a repertoire of sequences available for functional evolution and subject to non-neutral evolutionary changes. Pseudogenes might be considered as potogenes (following the terminology of J. Brosius and S.J. Gould, 1992), i.e., DNA sequences with a potentiality for becoming new genes (Balakirev and Ayala, 2003). Furthermore, we conjecture that some pseudogenes along with their parental sequences may constitute sets of indivisible functionally interacting entities (intergenic complexes or “intergenes”), in which all the component elements are required in order to fulfill a collective functional role.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen C.L. and Kelly J.M. 2001. Trypanosoma cruzi: mucin pseudogenes organized in a tandem array. Exp Parasitol. 97, 173–177.

    Google Scholar 

  • Alfonzo J.D., Crother T.R., Guetsova M.L., Daignan-Fomier B. and Taylor M.W. 1999. APT I, but not APT2, codes for a functional adenine phosphoribosyltransferase in Saccharomyces cerevisiae. J Bacteriol. 181, 347–352.

    Google Scholar 

  • Andersson J.O. and Andersson S.G.E. 2001. Pseudogenes, junk DNA, and the dynamics of rickettsia genomes. Mol Biol Evol. 18, 829–839.

    Article  PubMed  CAS  Google Scholar 

  • Arcari P., Martinelli R. and Salvatore F. 1984. The complete sequence of a full length cDNA for human liver glyceraldehyde-3-phosphate dehydrogenase: evidence for multiple mRNA species. Nucl Acids Res. 12, 9179–9189.

    Article  PubMed  CAS  Google Scholar 

  • Aubert D., Bisanz-Seyer C. and Herzog M. 1992. Mitochondrial rpsl4 is a transcribed and edited pseudogene in Arabidopsis thaliana. Plant Mol Biol. 20, 1169–1174.

    Article  PubMed  CAS  Google Scholar 

  • Balakirev E.S. and Ayala F.J. 1996. Is esterase-P encoded by a cryptic pseudogene in Drosophila melanogaster? Genetics 144, 1511–1518.

    CAS  Google Scholar 

  • Balakirev E.S. and Ayala F.J. 2003. Pseudogenes: Are They “Junk” or Functional DNA? Ann Rev Genet. 37, 123–151.

    Article  PubMed  CAS  Google Scholar 

  • Balakirev E.S., Chechetkin V.R., Lobzin V.V. and Ayala F.J. 2003. DNA polymorphism in

    Google Scholar 

  • the /esterase gene cluster of Drosophila melanogaster. Genet. 164, 533–544.

    Google Scholar 

  • Balakireva M.D., Shevelyov Y.Y., Nurminsky D.I., Livak K.J. and Gvozdev V.A. 1992.

    Google Scholar 

  • Structural organization and diversification of Y-linked sequences comprising Su(Ste) genes

    Google Scholar 

  • in Drosophila melanogaster. Nucl Acids Res. 20, 3731–3736.

    Google Scholar 

  • Bard J.A., Nawoschik S.P., O’Dowd B.F., George S.R., Branchek T.A. and Weinshank R.L 1995. The human serotonin 5-hydroxytryptaminew receptor pseudogene is transcribed. Genetics 153, 295–296.

    CAS  Google Scholar 

  • Benatar T. and Ratcliffe M.J.H. 1993. Polymorphism of the functional immunoglobulin variable region genes in the chicken by exchange of sequence with donor pseudogenes. Eur J Immunol. 23, 2448–2453.

    Article  PubMed  CAS  Google Scholar 

  • Benevolenskaya E.V., Kogan G.L., Tulin A.V., Philipp D. and Gvozdev V.A. 1997. Segmented gene conversion as a mechanism of correction of 18S rRNA pseudogene located outside of rDNA cluster in D. melanogaster. J Mol Evol. 44, 646–651.

    Article  CAS  Google Scholar 

  • Blankenstein T., Bonhomme F. and Krawinkel U. 1987. Evolution of pseudogenes in the immunoglobulin VH-gene family of the mouse. Immunogene. 26, 237–248.

    Article  CAS  Google Scholar 

  • Boger E.T., Sellers J.R. and Friedman T.B. 2001. Human myosin XVBP is a transcribed pseudogene. J Muscle Res Cell Motility 22, 477–483.

    Article  CAS  Google Scholar 

  • Brayton K.A., Knowles D.P., McGuire T.C. and Palmer G.H. 2001. Efficient use of a small genome to generate antigenic diversity in tick-borne ehrlichial pathogens. Proc Natl Acad Sci, USA 98, 4130–4135.

    Google Scholar 

  • Brayton K.A., Palmer G.H., Lundgren A., Yi J. and Barbet A.F. 2002. Antigenic variation of Anaplasma marginale mspl occurs by combinatorial gene conversion. Mol Microbiol. 43, 1151–1159.

    Article  PubMed  CAS  Google Scholar 

  • Bristow J., Gitelman S.E., Tee M.K., Staels B. and Miller W.L. 1993. Abundant adrenal-specific transcription of the human P450c21A “pseudogene”. J Biol Chem. 268, 1291912924.

    Google Scholar 

  • Brosius J. and Gould S.J. 1992. On “genomenclature”: A comprehensive (and respectful) taxonomy for pseudogenes and other “junk DNA”. Proc Natl Acad Sci, USA 89, 1070610710.

    Google Scholar 

  • Buettner J.A., Glusman G., Ben-Arie N., Ramos P., Lancet D. and Evans G.A. 1998. Organization and evolution of olfactory receptor genes on human chromosome 11. Genom. 53, 56–68.

    Article  CAS  Google Scholar 

  • Chakrabarti R., McCracken J.B., Chakrabarti D. and Souba W.W. 1995. Detection of a functional promoter/enhancer in an intronless human gene encoding a glutamine synthaselike enzyme. Genetics 153, 163–199.

    CAS  Google Scholar 

  • Collet C., Nielsen K.M., Russell R.J., Karl M., Oakeshott J.G. and Richmond R.C. 1990. Molecular analysis of duplicated esterase genes in Drosophila melanogaster. Mol Biol Evol. 7, 9–28.

    PubMed  CAS  Google Scholar 

  • Currie P.D. and Sullivan D.T. 1994. Structure, expression and duplication of genes which encode phosphoglyceromutase of Drosophila melanogaster. Genetics 138, 352–363.

    PubMed  CAS  Google Scholar 

  • Danilevskaya O.N., Kurenova E.V., Pavlova M.N., Bebehov D.V., Link A.J., Koga A., Vellek A. and Hartl, D.L. 1991. He-T family DNA sequences in the Y chromosome of Drosophila melanogaster share homology with the X-linked Stellate genes. Chromosome 100, 118–124.

    Article  CAS  Google Scholar 

  • De Wind N., Dekker M., Berns A., Radman M. and Ride H.T. 1995. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination and predisposition to cancer. Cell 82, 321–330.

    Article  PubMed  Google Scholar 

  • Diaz M., Pomykala H.M., Bohlander S.K., Maltepe E., Malik K., et al. 1994. Structure of the human type-I interferon gene cluster determined from a YAC clone contig. Genom. 22, 540–552.

    Article  CAS  Google Scholar 

  • Dumancic M.M., Oakeshott J.G., Russell R.J. and Healy, M.J. 1997. Characterization of the EstP protein in Drosophila melanogaster and its conservation in Drosophilids. Biochem Gene. 35, 251–271.

    Article  CAS  Google Scholar 

  • Dvofâk J., Luo M.C. and Yang Z.L. 1998. Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and cross-fertilizing Aegilops species. Genetics 148, 423–434.

    Google Scholar 

  • Elliott B., Richardson C., Winderbaum J., Nickoloff J.A. and Jasin M. 1998. Gene conversion tracts in mammalian cells from double-strand break repair. Mol Cell Biol. 18, 93–101.

    PubMed  CAS  Google Scholar 

  • Endoh A., Yang L. and Hornsby P.J. 1998. CYP21 pseudogene transcripts are much less abundant than those from the active gene in normal human adrenocortical cells under various conditions in culture. Mol Cell Endocrin. 137, 13–19.

    Article  CAS  Google Scholar 

  • Ferguson S.E., Rudikoff S. and Osborne B.A. 1988. Interaction and sequence diversity among T15 VH genes in CBA/J mice. J Exp Med. 168, 1339–1349.

    Article  PubMed  CAS  Google Scholar 

  • Fujii G.H., Morimoto A.M., Berson A.E. and Bolen J.B. 1990. Transcriptional analysis of the PTEN/MMAC1 pseudogene, `YPTEN. Oncogene. 18, 1765–1769.

    Article  Google Scholar 

  • Gimelbrant A.A. and McClintock T.S. 1997. A nuclear matrix attachment region is highly homologous to a conserved domain of olfactory receptors. J Mol Neurosci. 9, 61–63.

    Article  PubMed  CAS  Google Scholar 

  • Givol D., Zakut R., Effron K., Rechavi G., Ram D. and Cohen J.B. 1981. Diversity of germ-line immunoglobulin VH genes. Nature 292, 426–430.

    Article  PubMed  CAS  Google Scholar 

  • Glusman G., Sosinsky A., Ben-Asher E., Avidan N., Sonkin D., et al. 2000. Sequence, structure, and evolution of a complete human olfactory receptor gene cluster. Genom. 63, 227–245.

    Article  CAS  Google Scholar 

  • Goeddel D.V., Leung D.W., Dull T.J., Gross M., Lawn R.M., McCandliss R., Seeburg P.H., Ulrich A., Velverton E. and Gray P.W. 1981. The structure of eight distinct cloned human leukocyte interferon cDNAs. Nature (Lond.) 290, 20–26.

    Article  CAS  Google Scholar 

  • Gojobori T., Li W.H. and Graur D. 1982. Patterns of nucleotide substitution in pseudogenes and functional genes. J Mol Evol. 18, 360–369.

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb L.D. and Ford V.S. 1997. A recently silenced, duplicate PgiC locus in Clarkia. Mol Biol Evol. 14, 125–132.

    Article  PubMed  CAS  Google Scholar 

  • Graur D. and Li W.H. 2000. Fundamentals of Molecular Evolution. 2°d (Ed.), Sinauer, Sunderland, Mass.

    Google Scholar 

  • Gromko M.H., Gilbert D.F. and Richmond R C 1984. Sperm transfer and use in the multiple mating system of Drosophila. In: Smith R.L. (Ed.), Sperm Competition and the Evolution of Animal Mating Systems, pp. 371–426 Academic Press, New York.

    Google Scholar 

  • Haas R., Veit S. and Meyer T.F. 1992. Silent pilin genes of Neisseria gonorrhoeae MS 11 and the occurrence of related hypervariant sequences among other gonococcal isolates. Mol Microbiol. 6, 197–208.

    Article  PubMed  CAS  Google Scholar 

  • Hall B.G. 1990. Directed evolution of a bacterial operon. BioEssays 12, 551–558.

    Article  PubMed  CAS  Google Scholar 

  • Hardy R.W., Tokuyasu K.T. and Lindsley D.L. 1981. Analysis of spermatogenesis in

    Google Scholar 

  • Drosophila melanogaster bearing deletions for Y chromosome fertility genes.

    Google Scholar 

  • Chromosoma 83, 593–617.

    Google Scholar 

  • Hardy R.W., Lindsley D.L., Livak K.J., Lewis B., Siversten A.L., Joslyn G.L., Edwards J. and Bonaccorsi S. 1984. Cytogenetic analysis of a segment of the Y chromosome of Drosophila melanogaster. Genetics 107, 591–610.

    PubMed  CAS  Google Scholar 

  • Harrison P.M. and Gerstein M. 2002 Studying genomes through the aeons: protein families, pseudogenes and proteome evolution. J Mol Biol. 318, 1155–1174.

    Article  PubMed  CAS  Google Scholar 

  • Harrison P.M., Echols N. and Gerstein M.B. 2001. Digging for dead genes: an analysis of the characteristics of the pseudogene population in the Caenorhabditis elegans genome. Nucl Acids Res. 29, 818–830.

    Article  PubMed  CAS  Google Scholar 

  • Harrison P.M., Kumar A., Lan N., Echols N., Snyder M. and Gerstein M. 2002. A small reservoir of disabled ORFs in the yeast genome and its implications for the dynamics of proteome evolution. J Mol Biol. 316, 409–419.

    Article  PubMed  CAS  Google Scholar 

  • Harrison P.M., Milbum D., Zhang Z., Bertone P. and Gerstein M. 2003, Identification of pseudogenes in the Drosophila melanogaster genome. Nucl Acids Res. 31, 1033–1037.

    Article  PubMed  CAS  Google Scholar 

  • Healy M.J., Dumancic M.M. and Oakeshott J.G. 1991. Biochemical and physiological studies of soluble esterases from Drosophila melanogaster. Biochem Gene. 29, 365–388.

    Article  CAS  Google Scholar 

  • Healy M.J., Dumancic M.M., Cao A. and Oakeshott J.G. 1996. Localization of sequences regulating ancestral and acquired sites of esterase 6 activity in Drosophila melanogaster. Mol Biol Evol. 13, 784–797.

    Article  PubMed  CAS  Google Scholar 

  • Hill S.A., Morrison S.G. and Swanson J. 1990. The role of direct oligonucleotide repeats in gonococcal pilin gene variation. Mol Microbiol. 4, 1341–1352.

    Article  PubMed  CAS  Google Scholar 

  • Jacq C., Miller J.R. and Brownlee G.G. 1977. A pseudogene structure in 5S DNA of Xenopus laevis. Cell 12, 109–120.

    Article  PubMed  CAS  Google Scholar 

  • Jeffs P.S. and Ashbumer M. 1991. Processed pseudogenes in Drosophila. Proc R Soc Lond B. 244, 151–159.

    Article  CAS  Google Scholar 

  • Jeffs P.S., Holmes E.C. and Ashbumer M. 1994. The molecular evolution of the Alcohol dehydrogenase and alcohol dehydrogenase-related genes in the Drosophila melanogaster species subgroup. Mol Biol Evol. 11, 287–304.

    PubMed  CAS  Google Scholar 

  • John T.R., Smith J.J. and Kaiser I.I. 1996. A phospholipase A2-like pseudogene retaining the highly conserved introns of Mojave toxin and other snake venom group II PLA2s, but having different exons. DNA and Cell Biol. 15, 661–668.

    Article  CAS  Google Scholar 

  • Kalmykova A.I., Dobritsa A.A. and Gvozdev V.A. 1998. Su(Ste) diverged tandem repeats in a Y chromosome of Drosophila melanogaster are transcribed and variously processed. Genetics 148, 243–249.

    Google Scholar 

  • Kaysan V.M., Koval A.P. and Palamarchuk A.J. 1994. A growth hormone pseudogene in the salmon genome. Genetics 141, 301–302.

    Google Scholar 

  • Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 16, 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Korneev S.A., Park J.H. and O’Shea M. 1999. Neuronal expression of neural nitric oxide synthase (nNOS) protein is suppressed by an antisense RNA transcribed from an NOS pseudogene. J Neurosci. 19, 7711–7720.

    PubMed  CAS  Google Scholar 

  • Larhammar D. and Risinger C. 1994. Why so few pseudogenes in tetraploid species? Trends Gene. 10, 418–419.

    Article  CAS  Google Scholar 

  • Lawrence J.G., Hendrix R.W. and Casjens S. 2001. Where are the pseudogenes in bacterial genomes? Trends Microbiol. 9, 535–540.

    Article  PubMed  CAS  Google Scholar 

  • Li W.H. 1983. Evolution of duplicate genes and pseudogenes. In Nei M and Koehn RK (eds)

    Google Scholar 

  • Evolution of Genes and Proteins, pp. 14–37, Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Li W.H., Gojobori T. and Nei M. 1981. Pseudogenes as a paradigm of neutral evolution.

    Google Scholar 

  • Nature 292, 237–239.

    Google Scholar 

  • Little P.F. 1982. Globin pseudogenes. Cell 28, 683–684.

    Article  PubMed  CAS  Google Scholar 

  • Livak K.J. 1984. Organization and mapping of a sequence on the Drosophila melanogaster X

    Google Scholar 

  • and Ychromosomes that is transcribed during spermatogenesis. Genetics 107, 611–634. Livak K.J. 1990. Detailed structure of the Drosophila melanogaster Stellate genes and their

    Google Scholar 

  • transcripts. Genetics 124, 303–316.

    Google Scholar 

  • Matters G.L. and Goodenough U.W. 1992. A gene/pseudogene tandem duplication encodes a cysteine-rich protein expressed during zygote development in Chlamydomonas reinhardtii. Mol Gen Gene. 232, 81–88.

    Article  CAS  Google Scholar 

  • McCarrey J.R. and Riggs A.D. 1986. Determinator-inhibitor pairs as a mechanism for threshold setting in development: a possible function for pseudogenes. Proc Natl Acad Sci, USA 83, 679–683. 9+

    Google Scholar 

  • McCarrey J.R. and Thomas K. 1987. Human testis-specific PGK gene lacks introns and possesses characteristics of a processed gene. Nature (Lond.) 326, 501–505.

    Article  CAS  Google Scholar 

  • McCormack W.H. and Thompson C.B. 1990. IgL variable gene conversion display pseudogene donor preference and 5’ to 3’ polarity. Genes Dev. 4, 548–558.

    Google Scholar 

  • Mighell A.J., Smith N.R., Robinson P.A. and Markham A.F. 2000. Vertebrate pseudogenes. FEBS Letters 468, 109–114.

    Article  PubMed  CAS  Google Scholar 

  • Misra-Press A., Cooke N.E. and Liebhaber S.A. 1994. Complex alternative splicing partially inactivates the human chorionic somatomammotropin-like (hCS-L) gene. J Biol Chem. 269, 23220–23229.

    PubMed  CAS  Google Scholar 

  • Nguyen T., Sunahara R., Marchese A., Van Tol H.H.M., Seeman P. and O’Dowd B.F. 1991. Transcription of a human dopamine pseudogene. Biochem Biophys Res Commun. 181, 16–21.

    Article  PubMed  CAS  Google Scholar 

  • Noormohammadi A.H., Markham P F, Kanci A., Whithear K.G. and Browning G.F. 2000. A novel mechanism for control of antigenic variation in the haemagglutinin gene family of Mycoplasma synoviae. Mol Microbiol. 35, 911–923.

    Article  PubMed  CAS  Google Scholar 

  • Oakeshott J.G., Collet C., Phillis R., Nielsen K.M., Russell R.J., Chambers G.K., Ross V. and Richmond R.C. 1987. Molecular cloning and characterization of esterase 6, a serine hydrolase from Drosophila. Proc Natl Acad Sci, USA 84, 3359–3363.

    Google Scholar 

  • Oakeshott J.G., van Papenrecht E.A., Boyce T.M., Healy M.J. and Russell R.J. 1993. Evolutionary genetics of Drosophila esterases. Genetics 90, 239–268.

    CAS  Google Scholar 

  • Olsen M.A. and Schechter L.E. 1999. Cloning, mRNA localization and evolutionary conservation of a human 5-HT7 receptor pseudogene. Genetics 227, 63–69.

    CAS  Google Scholar 

  • Phillips J.P., Tainer J.A., Getzoff E.D., Boulianne G.L., Kirby K. and Hilliker A.J. 1995. Subunit-destabilizing mutations in Drosophila copper/zinc superoxide dismutase: Neuropathology and a model of dimmer disequilibrium. Proc Natl Acad Sci USA 92, 8574–8578.

    Google Scholar 

  • Pinarbasi E., Elliott J. and Homby D.P. 1996. Activation of a yeast pseudo DNA

    Google Scholar 

  • methyltransferase by deletion of a single amino acid. J Mol Biol. 257, 804–813.

    Google Scholar 

  • Powell J.R. 1997. Progress and Prospects in Evolutionary Biology. The Drosophila Model

    Google Scholar 

  • Oxford University Press, Oxford and New York.

    Google Scholar 

  • Pritchard J.K. and Schaeffer S.W. 1997. Polymorphism and divergence at a Drosophila pseudogene locus. Genetics 147, 199–208.

    PubMed  CAS  Google Scholar 

  • Proudfoot N. 1980. Pseudogenes. Nature 286, 840–841.

    Article  CAS  Google Scholar 

  • Quinones V., Zanlungo S., Moenne A. and Gómez I. 1996. The rp15-rps14-cob gene arrangement in Solanum tuberosum: rps14 is a transcribed and unedited pseudogene. Plant Mol Biol. 31, 937–943.

    Article  PubMed  CAS  Google Scholar 

  • Ramos-Onsins S. and Aguadé M. 1998. Molecular evolution of the Cecropin multigene family in Drosophila: Functional genes vs. pseudogenes. Genetics 150, 157–171.

    PubMed  CAS  Google Scholar 

  • Restrepo B.I., Carter C.J. and Barbour A.G. 1994. Activation of a vmp pseudogene in Borrelia hermsii: an alternate mechanism of antigenic variation during relapsing fever. Mol Microbiol. 13, 287–299.

    Article  PubMed  CAS  Google Scholar 

  • Richmond R.C., Gilbert D.G., Sheehan K.B., Gromko M.H. and Butterworth F.M. 1980. Esterase 6 and reproduction in Drosophila melanogaster. Science 207, 1483–1485.

    Article  PubMed  CAS  Google Scholar 

  • Richmond R.C., Nielsen K.M., Brady J.P. and Snella E.M. 1990. Physiology, biochemistry and molecular biology of the Est-6 locus in Drosophila melanogaster. In: Barker JSF, Starmer W.T. and Maclntyre R.J. (Eds.), Ecological and Evolutionary Genetics of Drosophila pp. 273–292, Plenum Press, New York.

    Google Scholar 

  • Rogers M.A., Winter H., Wolf C., Heck M. and Schweizer J. 1998. Characterization of a 190kilobase pair domain of human type I hair keratin genes. J Biol Chem. 273, 26683–26691.

    Article  PubMed  CAS  Google Scholar 

  • Rose P.M., Lynch J.S., Frazier S.T., Fisher S.M., Chung W., et al. 1997. Molecular genetic analysis of a human neuropeptide Y receptor. The human homolog of the murine “Y5” receptor may be a pseudogene. J Biol Chem. 272, 3622–3627.

    Article  PubMed  CAS  Google Scholar 

  • Rothenfluh H.S., Blanden R.V. and Steele E.J. 1995. Evolution of V genes: DNA sequence structure of functional germline genes and pseudogenes. Immunogene. 42, 159–171.

    Google Scholar 

  • Schiff C., Milili M. and Fougereau M. 1985. Functional and pseudogenes are similarly organized and may equally contribute to the extensive antibody diversity of the IgVHII family. EMBO J. 4, 1225–1230.

    PubMed  CAS  Google Scholar 

  • Schuster W. and Brennicke A. 1991. RNA editing makes mistakes in plant mitochondria: editing loses sense in transcripts of a rps19 pseudogene and in creating stop codons in cox/ and rps3 mRNAs of Oenothera. Nucl Acids Res. 19, 6923–6928.

    Article  PubMed  CAS  Google Scholar 

  • Seiser C., Beck G. and Wintersberger E. 1990. The processed pseudogene of mouse thymidine kinase is active after transfection. FEBS Letters 270, 123–126.

    Article  PubMed  CAS  Google Scholar 

  • Sharon D., Glusman G., Pilpel Y., Khen M., Gruetzner F., Haaf T., et al. 1999. Primate evolution of an olfactory receptor cluster: Diversification by gene conversion and recent emergence of pseudogenes. Genom. 61, 24–36.

    Google Scholar 

  • Skerka C., Horstmann R.D. and Zipfel P.F. 1991. Molecular cloning of a human serum protein structurally related to complement factor H. J Biol Chem. 266, 12015–12020.

    PubMed  CAS  Google Scholar 

  • Sorge J., Gross E., West C. and Beutler E. 1990. High level transcription of the glucocerebrosidase pseudogene in normal subjects and patients with Gaucher disease. J Clin Invest. 86, 1137–1141.

    Article  PubMed  CAS  Google Scholar 

  • Sudo K., Maekawa M., Luedemann M.M., Deaven L.L., Li S.S.L. 1990. Human lactate dehydrogenase-B processed pseudogene: nucleotide sequence analysis and assignment to the X-chromosome. Biochem Biophys Res Corn. 171, 67–74.

    Article  CAS  Google Scholar 

  • Sullivan D.T., Starmer W.T., Curtiss S.W., Menotti-Raymond M. and Yum J. 1994. Unusual molecular evolution of an Adh pseudogene in Drosophila. Mol Biol Evol. 11, 443–458.

    PubMed  CAS  Google Scholar 

  • Takemura M., Nozato N., Oda K., Kobayashi Y., Fukuzawa H. and Ohyama K. 1995. Active transcription of the pseudogene for subunit 7 of the NADH dehydrogenase in Marchantia polymorpha mitochondria. Mol Gen Gene. 247, 565–570.

    Article  CAS  Google Scholar 

  • Takle G.B., O’Connor J., Young A.J. and Cross G.A. 1992. Sequence homology and absence of mRNA defines a possible pseudogene member of the Trypanosoma cruzi gp85/sialidase multigene family. Mol Biochem Parasitol. 56, 117–128.

    Article  PubMed  CAS  Google Scholar 

  • Taylor M.C., Muhia D.K., Baker D.A., Mondragon A., Schaap P. and Kelly J.M. 1999. Trypanosoma cruzi adenylyl cyclase is encoded by a complex multigene family. Mol Biochem Parasitol. 104, 205–217.

    Google Scholar 

  • Thiele H., Berger M., Skalweit A. and Thiele B.J. 2000. Expression of the gene and processed pseudogenes encoding the human and rabbit translationally controlled tumour protein ( TCTP ). Eur J Biochem. 267, 5473–5481.

    Google Scholar 

  • Thon G., Baltz T. and Eisen H. 1989. Antigenic diversity by the recombination of pseudogenes. Genes Develop. 3, 1247–1254.

    Article  PubMed  CAS  Google Scholar 

  • Trabesinger-Ruef N., Jermann T., Zankel T., Durrant B., Frank G. and Brenner S.A. 1996. Pseudogenes in ribonuclease evolution: a source of new biomacromolecular function? FEBS Letters 382, 319–322.

    Article  PubMed  CAS  Google Scholar 

  • Triglia T., Thompson J.K. and Cowman A.F. 2001. An EBA175 homologue which is transcribed but not translated in erythrocytic stages of Plasmodium falciparum. Mol Biochem Parasitol. 116, 55–63.

    Article  PubMed  CAS  Google Scholar 

  • Troyanovsky S.M. and Leube R.E. 1994. Activation of the silent human cytokeratin 17 pseudogene-promoter region by cryptic enhancer elements of the cytokeratin 17 gene. Eur J Biochem. 223, 61–69.

    Article  Google Scholar 

  • Tso J., Sun X.H., Kao T.H., Reece K. and Wu R. 1985. Isolation and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase cDNAs: genomic complexity and molecular evolution of the gene. Nucl Acids Res. 13, 2485–2502.

    Article  PubMed  CAS  Google Scholar 

  • Vanin E. 1985. Processed pseudogenes: characteristics and evolution. Ann Rev Gene. 19, 253–272.

    Article  CAS  Google Scholar 

  • Weiner A.M., Deininger P.L. and Efstratiadis A. 1986. Nonviral retroposons: gene, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Ann Rev Biochem. 55, 631–661.

    Article  PubMed  CAS  Google Scholar 

  • Weinshank R.L., Adham N., Macchi M., Olsen M.A., Branchek T.A. and Hartig P.R. 1991. Molecular cloning and characterization of a high affinity dopamine receptor ( Dlß) and its pseudogene. J Biol Chem. 266, 22427–22435.

    Google Scholar 

  • Wilde C.D. 1986. Pseudogenes. CRC Crit Rev Biochem. 19, 323–352.

    Article  CAS  Google Scholar 

  • Whitcombe D.M., Albertson D.G. and Cox T.M. 1994. Molecular analysis of functional and nonfunctional genes for human ferrochelatase: isolation and characterization of a FECH pseudogene and its sublocalization on chromosome 3. Genom. 20, 482–486.

    Article  CAS  Google Scholar 

  • Winter H., Langbein L., Krawczak M., Cooper D.N., Jave-Suarez L.F., Rogers M.A., Praetzel S., Heidt P.J. and Schweizer J. 2001. Human type I hair keratin pseudogene yihHaA has functional orthologs in the chimpanzee and gorilla: evidence for recent inactivation of the human gene after the Pan-Homo divergence. Hum Genet. 108, 37–42.

    Article  PubMed  CAS  Google Scholar 

  • Zhang J.R., Hardham J.M., Barbour A.G. and Non-is S.J. 1997. Antigenic variation in lyme disease Borrelia by promiscuous recombination of VMP-like sequence cassettes. Cell 89, 275–285.

    Google Scholar 

  • Zhang J., Pontoppidan B., Xue J., Rask L. and Meijer J. 2002. The third myrosinase gene TGG3 in Arabidopsis thaliana is a pseudogene specifically expressed in stamen and petal. Physiol Plantarum. 115, 25–34.

    Article  CAS  Google Scholar 

  • Zhang X.M., Cathala G., Soua Z., Lefranc M.P. and Huck S. 1996. The human T-cell receptor gamma variable pseudogene VIO is a distinctive marker of human speciation. Immunogene. 43, 196–203.

    CAS  Google Scholar 

  • Zhang Y., Nelson M. and Van Etten J.L. 1992. A single amino acid change restores DNA cytosine methyltransferase activity in a cloned chlorella virus pseudogene. Nucl Acids Res. 20, 1637–1642.

    Article  PubMed  CAS  Google Scholar 

  • Zhou B.S., Beidler D.R. and Cheng Y.C. 1992. Identification of antisense RNA transcripts from a human DNA topoisomerase I pseudogene. Cancer Res. 52, 4280–4285.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Balakirev, E.S., Ayala, F.J. (2004). Pseudogenes are Not Junk DNA. In: Wasser, S.P. (eds) Evolutionary Theory and Processes: Modern Horizons. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0443-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0443-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6457-8

  • Online ISBN: 978-94-017-0443-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics