Skip to main content

Part of the book series: Applied Logic Series ((APLS,volume 9))

Abstract

Calculi of first-order logic were developed for many different purposes, e.g., for (i) reconstructing mathematical proofs in a formal framework or (ii) for automated proof search. The old and “traditional” calculi, like Hilbert-type and Gentzen-type calculi, belong to the first category. Either they serve as a framework to a theory of provability, where not actual proofs but only their existence is of relevance, or they are used as instruments for proof transformations (e.g., cut-elimination in the sequent calculus). Specific rules like cut and modus ponens serve as proof building tools, which allow to combine lemmata to more complex proofs. The substitution rule (or elimination rule for quantifiers) is mostly formulated as a unary rule which can be applied independently of others. As the discipline of automated theorem proving evolved in the early sixties, the cut-rule and the unrestricted substitution rule were clearly defective features in a discipline of proof search. The first attempts to use Herbrand’s theorem directly and to reduce a first-order formula to a propositional one failed because of tremendous complexity. The paper of J. A. Robinson on the resolution principle (Robinson, 1965) then brought the decisive breakthrough: resolution was the first first-order calculus with a binary and minimal substitution principle — the well-known unification principle. Moreover, it works on quantifier-free conjunctive normal forms (clausal forms) which are logic-free (clauses can be represented as sequents of atoms). Resolution uses an atomic cut-rule in combination with the unification principle which allows for most general substitutions only. Thus, the key feature of resolution is minimality. Due to this minimality there are only finitely many deductions within a fixed depth, a property we call local finiteness. The price paid for this minimality is a loss of structure and an increase of proof complexity. The high proof complexity of computational calculi (like resolution, tableau calculi and connection calculi) forms a serious barrier to proof search for more complex theorems. The question arises, whether it is possible to combine the strong structural potential of the traditional logic calculi with the economical search features of computational calculi. To this aim, it is necessary to give up the strict minimality of the computational calculus without, at the same time, allowing the creation of arbitrary structures, signatures or lemmata. It is the purpose of this chapter to give a survey of different methods for introducing and preserving structure in automated deduction. The inference methods we present are extension methods in the sense that either the syntax is extended by predicate or function symbols or formulae are introduced which do not fulfill the (strict) subformula property. But all the rules we present here are computational in the sense that they are locally finite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, R B.: 1981, `Theorem Proving via General Matings’. J. ACM 28(2), 193214.

    Google Scholar 

  • Baaz, M., U. Egly, and C. G. Fermüller: 1997, `Lean Induction Principles for Tableaux’. In: D. Galmiche (ed.): Proceedings of the Sixth Workshop on Theorem Proving with Analytic Tableaux and Related Methods. pp. 62–75, Springer Verlag. LNAI 1227.

    Google Scholar 

  • Baaz, M., U. Egly, and A. Leitsch: 1998, `Normal Form Transformations’. In: J. A. Robinson and A. Voronkov (eds.): Handbook of Automated Reasoning. Elsevier Science.

    Google Scholar 

  • Baaz, M., C. Fermüller, and A. Leitsch: 1994, `A Non-Elementary Speed Up in Proof Length by Structural Clause Form Transformation’. In: LICS’94. Los Alamitos, California, pp. 213–219, IEEE Computer Society Press.

    Google Scholar 

  • Baaz, M. and A. Leitsch: 1985, `Die Anwendung starker Reduktionsregeln in automatischen Beweisen’. Proc. of the Austrian Acad. of Science 11194 287–307. In German.

    Google Scholar 

  • Baaz, M. and A. Leitsch: 1990, `A Strong Problem Reduction Method Based on Function Introduction’. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC). pp. 30–37, ACM Press.

    Google Scholar 

  • Baaz, M. and A. Leitsch: 1992, `Complexity of Resolution Proofs and Function Introduction’. Annals of Pure and Applied Logic 57, 181–215.

    Article  Google Scholar 

  • Baaz, M. and A. Leitsch: 1994a, `Methods of Functional Extension’. In: Collegium Logicum: Annals of the Kurt Gödel Society. Springer Wien New York, pp. 87–122.

    Google Scholar 

  • Baaz, M. and A. Leitsch: 1994b, `On Skolemization and Proof Complexity’. Fundamenta Informaticae 20, 353–379.

    Google Scholar 

  • Baaz, M. and A. Leitsch: 1996, `Cut Normal Forms and Proof Complexity’. Technical Report TR-CS-BL-96–1, Institut für Computersprachen, TU Wien.

    Google Scholar 

  • Boolos, G.: 1984, `Don’t Eliminate Cut’. Journal of Philosophical Logic 13, 373–378.

    Article  Google Scholar 

  • Boolos, G.: 1987, `A Curious Inference’. Journal of Philosophical Logic 16, 1–12.

    Article  Google Scholar 

  • Boy de la Tour, T.: 1990, `Minimizing the Number of Clauses by Renaming’. In: M. E. Stickel (ed.): Proceedings of the 10th International Conference on Automated Deduction: Kaiserslautern, 24.-27.

    Google Scholar 

  • Boy de la Tour, T.: 1990, `Minimizing the Number of Clauses by Renaming’. In: M. E. Stickel (ed.): Juli 1990. Berlin, pp. 558–572, Springer Verlag. LNAI 449.

    Google Scholar 

  • Bruschi, M.: 1991, `The Halting Problem’. AAR Newsletter pp. 7–12.

    Google Scholar 

  • Burkholder, L.: 1987, `The Halting Problem’. SIGACT News 18 (3), 48–60.

    Article  Google Scholar 

  • Dafa, L.: 1993, `A Mechanical Proof of the Halting Problem in Natural Deduction Style’. AAR Newsletter pp. 4–9.

    Google Scholar 

  • Dafa, L.: 1994, `The Formulation of the Halting Problem is Not Suitable for Describing the Halting Problem’. AAR Newsletter pp. 1–7.

    Google Scholar 

  • Eder, E.: 1984, `An Implementation of a Theorem Prover Based on the Connection Method’. In: W. Bibel and B. Petkoff (eds.): AIMSA 84, Artificial Intelligence - Methodology, Systems, Applications, Varna, Bulgaria. North-Holland Publishing Company.

    Google Scholar 

  • Eder, E.: 1992, Relative Complexities of First Order Calculi. Braunschweig: Vieweg.

    Book  Google Scholar 

  • Egly, U.: 1990, `Problem-Reduction Methods and Clause Splitting in Automated Theorem Proving’. Master’s thesis, Technische Universität Wien, Institut für Computersprachen, Abteilung für Anwendungen der Formalen Logik, Resselgasse 3/1, A-1040 Wien.

    Google Scholar 

  • Egly, U.: 1991, `A Generalized Factorization Rule Based on the Introduction of Skolem Terms’. In: H. Kaindl (ed.): Österreichische Artificial Intelligence Tagung. Berlin, Heidelberg, New York, pp. 116–125, Springer Verlag.

    Google Scholar 

  • Egly, U.: 1992, `Shortening Proofs by Quantifier Introduction’. In: A. Voronkov (ed.): Proceedings of the International Conference on Logic Programming and Automated Reasoning. pp. 148–159, Springer Verlag. LNAI 624.

    Google Scholar 

  • Egly, U.: 1993, `On Different Concepts of Function Introduction’. In: G. Gottlob, A. Leitsch, and D. Mundici (eds.): Proceedings of the Kurt Gödel Colloquium. pp. 172–183, Springer Verlag. LNCS 713.

    Google Scholar 

  • Egly, U.: 1994a, ‘On Methods of Function Introduction and Related Concepts’. Ph.D. thesis, TH Darmstadt, Alexanderstr. 10, D-64283 Darmstadt.

    Google Scholar 

  • Egly, U.: 1994b, `On the Value of Antiprenexing’. In: E Pfenning (ed.): Proceedings of the International Conference on Logic Programming and Automated Reasoning. pp. 69–83, Springer Verlag. LNAI 822.

    Google Scholar 

  • Egly, U.: 1996, `On Different Structure-preserving Translations to Normal Form’. J. Symbolic Computation 22, 121–142.

    Article  Google Scholar 

  • Egly, U. and T. Rath: 1996, `On the Practical Value of Different Definitional Translations to Normal Form’. In: M. McRobbie and J. K. Slaney (eds.): Proceedings of the Conference on Automated Deduction. pp. 403–417, Springer Verlag. LNAI 1104.

    Google Scholar 

  • Hilbert, D. and P. Bernays: 1939, Grundlagen der Mathematik II. Springer Verlag. Lee, S. and D. A. Plaisted: 1994, `Use of Replace Rules in Theorem Proving’. Methods of Logic in Computer Science 1, 217–240.

    Google Scholar 

  • Orevkov, V. P.: 1979, `Lower Bounds for Increasing Complexity of Derivations after Cut Elimination’. Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im V. A. Steklova AN SSSR 88, 137–161.

    Google Scholar 

  • Orevkov, V. P.: 1979, English translation in J. Soviet Mathematics, 2337–2350, 1982.

    Google Scholar 

  • Plaisted, D. A. and S. Greenbaum: 1986, `A Structure-Preserving Clause Form Translation’. J. Symbolic Computation 2, 293–304.

    Article  Google Scholar 

  • Reckhow, R. A.: 1976, `On the Length of Proofs in the Propositional Calculus’. Ph.D. thesis, Department of Computer Science, University of Toronto.

    Google Scholar 

  • Robinson, J.: 1965, `A Machine-Oriented Logic Based on the Resolution Principle’. J. ACM 12 (1), 23–41.

    Article  Google Scholar 

  • Statman, R.: 1979, `Lower Bounds on Herbrand’s Theorem’. In: Proc. AMS 75. pp. 104–107.

    Google Scholar 

  • Tseitin, G. S.: 1968, `On the Complexity of Derivation in Propositional Calculus’. In: A. O. Slisenko (ed.): Studies in Constructive Mathematics and Mathematical Logic, Part II. Leningrad: Seminars in Mathematics, V.A. Steklov Mathematical Institute, vol. 8, pp. 234–259.

    Google Scholar 

  • Tseitin, G. S.: English translation: Consultants Bureau, New York, 1970, pp. 115–125.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Baaz, M., Egly, U., Leitsch, A. (1998). Extension Methods in Automated Deduction. In: Bibel, W., Schmitt, P.H. (eds) Automated Deduction — A Basis for Applications. Applied Logic Series, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0435-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0435-9_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5051-9

  • Online ISBN: 978-94-017-0435-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics