Skip to main content

Technical Variables and the Use of Heteromorphisms in the Study of Human Chromosomes

  • Chapter
Atlas of Human Chromosome Heteromorphisms

Abstract

Disputed parentage is not a problem unique to our modern society. One of the first recorded cases dating back to Biblical times actually involved disputed maternity. After considerable quarreling over who was the true mother of a child, two women took their complaints to King Solomon for resolution. Solomon offered to cut the child in half so that the two women could then share the child equally. The true mother dropped her claim in order to save the life of her child, thus allowing Solomon to make a fair judgement (Old Testament, I Kings 3:16–27). Equally creative methods, employing blood tests of sorts, are found in twelfth-century Japanese folklore. In situations where an individual was claiming to be the heir to an estate, his finger was pricked and the blood was allowed to drip onto the skeleton of the deceased. If the blood soaked in, a relationship was established. Another popular method for determining relationships was to allow drops of blood from each individual to fall into a basin of water. If the drops came together, the claim was upheld [1]. One of the most important events leading to the development of modern paternity testing was Landsteiner’s discovery of the ABO blood group. In his 1901 paper Landsteiner suggested that the ABO system might be useful in blood transfusions and criminology. This breakthrough, coupled with the work done by Dunern and Hirszfeld in 1910 showing Mendelian inheritance of A, B and O, provided a foundation for paternity testing [2]. Until the late 1950s the only blood systems used were ABO, Rh and MN. In most cases a man could not expect much more than a 50/50 chance of being exonerated if falsely accused [1]. With the addition of at least 20 other red cell enzymes, red cell antigens, and serum proteins, as well as HLA and chromosome heteromorphism analysis, a falsely accused man’s chance of being excluded approached 100% by the mid-1980s. These technologies were for all practical purposes replaced in the early 1990s by a more cost-effective DNA technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Association of Blood Banks (1978). Paternity Testing. Washington, DC: AABB.

    Google Scholar 

  2. Race RR, Sanger R (1975). Blood Groups in Man, 6th edn. Oxford: Blackwell Scientific Publications, p. 8.

    Google Scholar 

  3. Magenis RE, Chamberlin J, Overton K (1974). Sequential Q- and C-band variants: inheritance in four generations of a family. Thirteenth Annual Somatic Cell Genetics Conference, US Virg in Islands.

    Google Scholar 

  4. McKenzie WH, Lubs HA (1975). Human Q and C chromosomal variations: Distribution and incidence. Cytogenet Cell Genet. 14: 97–115.

    Google Scholar 

  5. Müller HJ, Klinger HP, Glasser M (1975). Chromosome polymorphism in a human newborn population. II. Potentials for polymorphic chromosome variants for characterizing the ideogram of an individual. Cytogenet Cell Genet. 15: 239–55.

    Article  PubMed  Google Scholar 

  6. Jacobs PA (1977). Human chromosome heteromorphism (variants). Prog Med Genet. 2: 251–74.

    PubMed  CAS  Google Scholar 

  7. Magenis E, Palmer CG, Wang L et al. (1977). Heritability of chromosome banding variants. In: Population Cytogenetics. New York: Academic Press, pp. 179–188.

    Google Scholar 

  8. Van Dyke DL, Palmer CG, Nance WE, Yu PL (1977). Chromosome polymorphism and twin zygosity. Am J Hum Genet. 29: 431–47.

    PubMed  Google Scholar 

  9. Verma RS, Dosik H (1980). Human chromosomal heteromorphisms: nature and clinical significance. Int Rev Cytol. 62: 361–83.

    Article  PubMed  CAS  Google Scholar 

  10. Chapelle A, Fellman J, Unnerus V (1967). Determination of human paternity from the length of the Y chromosome. Ann Genet. 10: 60–4.

    Google Scholar 

  11. Arrighi FE, Hjsu TC (1971). Localization of heterochromatin in human chromosomes. Cytogenetics. 10: 81–6.

    Article  PubMed  CAS  Google Scholar 

  12. Caspersson T, Lomakka G, Zech L (1971). The 24 fluorescence patterns of human metaphase chromosomes–distinguishing characters and variability. Hereiditas. 67: 89–102.

    Article  Google Scholar 

  13. Gürtler H, Niebuhr E (1981). The use of chromosome variants in paternity cases. In: 9. Internatianale Tagung der Gesellschaft fur forensisch Blutgruppenkund. Bern: Wurzburg, Schmitt & Meyer, pp. 597–601.

    Google Scholar 

  14. Olson SB, Magenis RE, Rowe SI, Lovrien EW (1983). Chromosome heteromorphism analysis in cases of disputed paternity. Am J Med Genet. 15: 47–55.

    Article  PubMed  CAS  Google Scholar 

  15. Hauge M, Poulsen H, Halberg A, Mikkelsen M (1975). The value of fluorescence markers in the distinction between maternal and fetal chromosomes. Humangenetik. 26: 187–91.

    PubMed  CAS  Google Scholar 

  16. Olson SB, Magenis RE, Lovrien EW (1986). Human chromosome variation: The discriminatory power of Q-band heteromorphism (variant) analysis in distinguishing between individuals, with specific application to cases of questionable paternity. Am J Hum Genet. 38: 235–52.

    Google Scholar 

  17. Olson S, Magenis E, Lovrien E, Geyer J, Ryals L, Morrisey J (1984). Resolution of paternity disputes involving relatives as alleged fathers using chromosome heteromorphism analysis. Am J Hum Genet. 36: 108S.

    Google Scholar 

  18. Olson SB, Magenis RE, Lovrien EW (1986). Human chromosome variation: the discriminatory power of Q-band heteromorphism (variant) analysis in distinguishing between individuals, with specific application to cases of questionable paternity. Am J Hum Genet. 38: 235–52.

    PubMed  CAS  Google Scholar 

  19. Jonasson J, Therkelsen AJ, Lauritsen JG, Lindsten J (1972). Origin of triploidy in human abortuses. Hereditas. 71: 168–71.

    Article  PubMed  CAS  Google Scholar 

  20. Kajii T, Niikawa N (1977). Origin of triploidy and tetraploidy in man: 11 cases with chromosome markers. Cytogenet Cell Genet 18: 109–25.

    Article  PubMed  CAS  Google Scholar 

  21. Jacobs PA, Angell RR, Buchanan IM, Hassold TJ, Matsuyama AM, Manuel B (1978). The origin of human triploids. Ann Hum Genet. 42: 49–57.

    Article  PubMed  CAS  Google Scholar 

  22. Lauritsen JG, Bolund L, Friedrich U, Therkelsen AJ (1979). Origin of triploidy in spontaneous abortuses. Ann Hum Genet. 43: 1–5.

    Article  PubMed  CAS  Google Scholar 

  23. Galton M, Benirschke K (1959). Forty-six chromosomes in an ovarian teratoma. Lancet. 2: 761–2.

    Article  PubMed  CAS  Google Scholar 

  24. Corfman PA, Richart RM (1964). Chromosome number and morphology of benign ovarian cystic teratomas. N Engl J Med. 271: 1241–4.

    Article  PubMed  CAS  Google Scholar 

  25. Linder D, McKaw BK, Hecht F (1975). Parthenogenic origin of benign ovarian teratomas. N Engl J Med. 292: 63–6.

    Article  PubMed  CAS  Google Scholar 

  26. Kajii T, Ohama K (1977). Androgenetic origin of hydatidiform mole. Nature. 268: 633–4.

    Article  PubMed  CAS  Google Scholar 

  27. Robinson JA (1973). Origin of extra chromosome in trisomy 21. Lancet. 1: 131–3.

    Article  PubMed  CAS  Google Scholar 

  28. Uchida IA (1973). Paternal origin of the extra chromosome in Down’s syndrome. Lancet. 2: 1258.

    Google Scholar 

  29. Schmidt R, Dar H, Nitowsky HM (1975). Origin of extra 21 chromosome in patients with Down syndrome. Pediatr Res. 9: 367a.

    Google Scholar 

  30. Wagenbichler P (1976). Origin of the supernumerary chromosome in Down’s syndrome. ICS 397. V International Congress Hum Genet. Chicago: Excerpta Medica, p. 167a.

    Google Scholar 

  31. Magenis RE, Overton KM, Chamberlin J, Brady T, Lovrien E (1977). Parental origin of the extra chromosome in Down’s syndrome. Hum Genet. 37: 7–16.

    Article  PubMed  CAS  Google Scholar 

  32. Mikkelsen M, Poulsen H, Grinsted J, Lange A (1980). Non-disjunction in trisomy 21: study of chromosomal heteromorphisms in 110 families. Ann Hum Genet. 44: 17.

    Article  PubMed  CAS  Google Scholar 

  33. Magenis RE, Chamberlin J (1981). Parental origin of nondisjunction. In: de la Cruz FF, Gerald PS, editors. Trisomy 21 (Down Syndrome): Research Perspectives. Baltimore: University Press, pp. 77–93.

    Google Scholar 

  34. Olson SB, Magenis RE (1988). Preferential paternal origin of de novo structural chromosome rearrangements. In: Daniel A, editor. The Cytogenetics of Mammalian Autosomal Rearrangements. New York: Alan R. Liss, pp. 583–599.

    Google Scholar 

  35. Butler MG, Palmer CG (1983). Parental origin of chromosome 15 deletion in Prader-Willi syndrome. Lancet. 1: 1285–6.

    Article  PubMed  CAS  Google Scholar 

  36. Butler MG, Meany FJ, Palmer CG (1986). Clinical and cytogenetic survey of 39 individuals with Prader-Labhart-Willi syndrome. Am J Med Genet. 23: 793–809.

    Article  PubMed  CAS  Google Scholar 

  37. Mattei JF, Mattei MG, Giraud F (1983). Prader-Willi syndrome and chromosome 15: a clinical discussion of 20 cases. Hum Genet. 64: 356–61.

    Article  PubMed  CAS  Google Scholar 

  38. Nicholls RD, Knoll JH, Glatt K et al (1989). Restriction fragment length polymorphism with proximal 15q and their use in molecular cytogenetics and the Prader-Willi syndrome. Am J Med Genet. 33: 66–77.

    Article  PubMed  CAS  Google Scholar 

  39. Magenis RE, Toth-Fejel S, Allen LJ et al. (1990). Comparison of the 15q deletions in Prader-Willi and Angelman syndromes: specific regions, extent of deletions, parental origin, and clinical consequences. Am J Med Genet 35: 333–49.

    Article  PubMed  CAS  Google Scholar 

  40. Donlon T (1988). Similar molecular deletions on chromosome 15q11.2 are encountered in both the Prader-Willi and Angelman syndromes. Hum Genet. 80: 322–8.

    Article  PubMed  CAS  Google Scholar 

  41. Knoll JHM, Nicholls RD, Magenis RE, Graham JM Jr, Lalande M, Latt SA (1989). Angelman and Prader-Willi syndromes share a common chromosome deletion but differ in parental origin of the deletion. Am J Med Genet. 32: 285–90.

    Article  PubMed  CAS  Google Scholar 

  42. Pembrey M, Fennell SJ, Van den Berghe J et al. (1989). The association of Angelman’s syndrome with deletions within 15q11–13. J Med Genet. 26: 73–7.

    Article  PubMed  CAS  Google Scholar 

  43. Williams CA, Gray BA, Hendrickson JE, Stone JW, Cantu ES (1989). Incidence of 15q deletions in the Angelman syndrome: a survey of 12 affected persons. Am J Med Genet. 32: 339–45.

    Article  PubMed  CAS  Google Scholar 

  44. Maraschio P, Zuffardi O, Bernardi F et al. (1981). Preferential maternal derivation in inv dup(15): Analysis of eight new cases. Hum Genet. 57: 345–50.

    Article  PubMed  CAS  Google Scholar 

  45. Opheim KE, Brittingham A, Chapman D, Norwood TH (1995). Balanced reciprocal translocation mosaicism: How frequent? Am J Med Genet. 57: 601–4.

    Article  PubMed  CAS  Google Scholar 

  46. McFadden DE, Langlois S (1997). Meiotic origin of tripoidy. Med Genet Suppl. 9: 525.

    Google Scholar 

  47. Zaragoza MV, Surti U, Redline RW, Millie E, Chakravarti A, Hassold T (2000). Parental origin and phenotype of triploidy in spontaneous abortions: predominance of diandry and association with partial hydatidiform mole. Am J Hum Genet. 66: 1807–20.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Olson, S.B., Magenis, R.E. (2004). Technical Variables and the Use of Heteromorphisms in the Study of Human Chromosomes. In: Wyandt, H.E., Tonk, V.S. (eds) Atlas of Human Chromosome Heteromorphisms. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0433-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0433-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6296-3

  • Online ISBN: 978-94-017-0433-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics