Skip to main content

Abstract

The cornerstone of genetics is variation. No two individuals are alike, nor are their chromosomes. Heteromorphisms represent microscopically visible regions on chromosomes that are variable in size, morphology and staining properties in different individuals. Literally meaning “other or different forms”, the term “heteromorphism” is often used interchangeably with the terms “variant” or “polymorphism”. Polymorphism, however, is more correctly used in other contexts, implying multiple identifiable forms of a gene or molecule rather than of chromosome morphology. The term “normal variant” is often used, but is less precise. The main distinction is that heteromorphism can be seen under the microscope, whereas a polymorphism or normal variant might not. Because of widespread usage, both “normal variant” and “heteromorphism” are used interchangeably in this book. Heteromorphisms are typically stable, inherited and, by definition, every individual carries at least one form, if not two, for every heteromorphic region on their chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Denver Conference (1960). A proposed standard system of nomenclature of human mitotic chromosomes. Lancet. i:1063–1065 (1960); reprinted in Chicago Conference (1966), pp. 12–15.

    Google Scholar 

  2. London Conference on the Normal Human Karyotype (1963). Cytogenetics. 2:264–268 (1963); reprinted in Chicago Conference (1966), pp. 18–19.

    Google Scholar 

  3. Chicago Conference (1966). Standardization in human cytogenetics. Birth Defects: Original Article Series, Vol. 2, No. 2. New York: National Foundation, 1966.

    Google Scholar 

  4. Cooper HL, Hernits R (1963). A familial chromosome variant in a subject with anomalous sex differentiation. Am J Hum Genet. 15: 465–75.

    PubMed  CAS  Google Scholar 

  5. Yunis JJ, Gorlin RJ (1963). Chromosomal study of patients with cysts of the jaw, multiple nevoid basal cell carcinomata and bifid rib syndrome. Chromosoma. 14: 146–53.

    Article  PubMed  CAS  Google Scholar 

  6. Hakansson L (1966). A case of Werdnig–Hoffman muscular dystrophy with an unusual chromosome complement. Hereditas Genetiskt Archiv. 55: 358–61.

    Article  Google Scholar 

  7. Moores EC, Anders JM, Emanuel R (1966). Inheritance of marker chromosomes from cytogenetic survey of congenital heart disease. Ann Human Genet. 30: 77–84

    Article  CAS  Google Scholar 

  8. Palmer CG, Schroder J (1971). A familial variant of chromosome 9. J Med Genet. 8: 202–8.

    Article  PubMed  CAS  Google Scholar 

  9. Lobitz JR, McCaw BK, Hecht F (1972). Giemsa banding pattern of a heritable 1qh+ variant chromosome: a possible partial duplication. J Med Genet. 9: 276–9.

    Article  PubMed  CAS  Google Scholar 

  10. Jacobs PA, Melville M, Ratcliffe S, Keay AJ, Syme JA (1974). Cytogenetic survey of 11,680 newborn infants. Ann Hum Genet. 37: 359–76.

    Article  PubMed  CAS  Google Scholar 

  11. Friedrich U, Nielsen J (1973). Chromosome studies in 5,049 consecutive newborn children. Clin Genet. 4: 333.

    Article  PubMed  CAS  Google Scholar 

  12. Nielsen J, Sillisen I (1975). Incidence of chromosome aberrations among 11148 newborn children. Humangenetik. 30: 1–12.

    Article  PubMed  CAS  Google Scholar 

  13. Sergovich F, Valentine GH, Chen ATL, Kinch RAH, Snout MD (1969). Chromosome aberrations in 2159 consecutive newborn babies. N Engl J Med. 280: 851–5.

    Article  PubMed  CAS  Google Scholar 

  14. Hammerton JL, Canning N, Ray M, and Smith S (1975). A cytogenetic survey of 14,069 newborn infants. I. Incidence of chromosome abnormalities. Clin Genet. 8: 223–43.

    Google Scholar 

  15. Walzer S, Gerald PS (1977). A chromosome survey of 13,751 male newborns. In: Hook EB, Porter IH, editors. Population Cytogenetics. New York: Academic Press, pp. 45–61.

    Google Scholar 

  16. Lubs HA, Ruddle F (1970). Chromosomal abnormalities in the human population: estimation of rates based on New Haven newborn study. Science. 169: 495–7.

    Article  PubMed  CAS  Google Scholar 

  17. Hook EB, Porter IH (1977). Population Cytogenetics Studies in Humans. New York: Academic Press.

    Google Scholar 

  18. Donahue RP, Bias WB, Renwick JH, McKusick VA (1968). Probable assignment of the Duffy blood group locus to chromosome 1 in man. Proc Natl Acad Sci USA. 61: 949–55.

    Article  PubMed  CAS  Google Scholar 

  19. Genest P (1972). An eleven-generation satellited Y chromosome. Lancet. i: 1073.

    Google Scholar 

  20. Genest P (1973). Transmission hereditaire, depui 300 ans, d’un chromosome Y a satellites dans une lignee familiale. Ann Genet (Paris). 21: 237–8 [French].

    Google Scholar 

  21. Genest P, Genest FB, Gagnon-Blais D (1983). Un remaniement chromosomique inhabituel. Une translocation telomerique autosomique sur un Y a satellites (Yqs) multicentenaire. Ann Genet (Paris). 26: 86–90 [French].

    Google Scholar 

  22. Paris Conference (1971). Standardization in human cytogenetics. Birth Defects Original Article Series, Vol. 8, No. 7. New York: National Foundation,1972; also in Cytogenetics. 11: 313–62 (1972).

    Google Scholar 

  23. Geraedts JPM, Pearson PL (1974). Fluorescent chromosome polymorphisms; frequencies and segregation in a Dutch population. Clin Genet. 6: 247–57.

    Article  PubMed  CAS  Google Scholar 

  24. Arrighi FE, Hsu TC (1971). Localization of heterochromatin in human chromosomes. Cytogenetics. 10: 81–6.

    Article  PubMed  CAS  Google Scholar 

  25. Craig-Holmes AP, Shaw MW (1973). Polymorphism of human C-band heterochromatin. Science. 174: 702–4.

    Article  Google Scholar 

  26. Fitzgerald PH (1973). The nature and inheritance of an elongated secondary constriction on chromosome 9 of man. Cytogenet Cell Genet. 12: 404–13.

    Article  PubMed  CAS  Google Scholar 

  27. Craig-Holmes AP, Moore FP, Shaw MW (1975). Polymorphism of human C-band hetero-chromatin II. Family studies with suggestive evidence for somatic crossing over. Am J Hum Genet. 27: 178–89.

    Google Scholar 

  28. Sekhon GS, Sly WS (1975). Inheritance of Q and C Polymorphisms. Am J Hum Genet 27: 79a.

    Google Scholar 

  29. Magenis RE, Palmer CG, Wang L et al. (1977). Heritability of chromosome banding variants. In: Hook EB, Porter IH, editors. Population Cytogenetics. Studies in Humans. New York: Academic Press, pp 179–188.

    Google Scholar 

  30. Geraedts JPM, Pearson PL (1974). Fluorescent chromosome polymorphisms; frequencies and segregation in a Dutch population. Clin Genet. 6: 247–57.

    Article  PubMed  CAS  Google Scholar 

  31. Mikelsaar AV, Kaosaar ME, Tuur SJ, Viikmaa MH, Talvik TA, Laats J (1975). Human karyotype polymorphisms. III. Routine and fluorescence microscope investigation of chromosomes in normal adults and mentally retarded children. Humangenetik. 26: 1–23.

    Google Scholar 

  32. Muller HJ, Klinger HP, Glasser M (1975). Chromosome polymorphism in a human newborn population. II. Potentials of polymorphic chromosome variants for characterizing the ideogram of an individual. Cytogenet Cell Genet. 15: 239–55.

    Google Scholar 

  33. Muller HJ, Klinger HP (1975). Chromosome polymorphism in a human newborn population. In: Pearson PL, Lewis KR, editors. Chromosomes Today, Vol. 5. Jerusalem: John Wiley.

    Google Scholar 

  34. Lin CC, Gideon MM, Griffith P et al. (1976). Chromosome analysis on 930 consecutive newborn children using quinacrine fluorescent banding technique. Hum Genet. 31: 315–28.

    Article  PubMed  CAS  Google Scholar 

  35. McKenzie WH, Lubs HA (1975). Human Q and C chromosomal variations: distribution and incidence. Cytogenet Cell Genet. 14: 97–115.

    Article  PubMed  CAS  Google Scholar 

  36. Lubs HA, Patil SR, Kimberling WJ et al. (1977). Q and C-banding polymorphisms in 7 and 8 year old children: Racial differences and clinical significance: In: Hook E, Porter H, editors. Population Cytogenetic Studies in Humans. New York: Academic Press, pp. 133–59.

    Google Scholar 

  37. Pearson P (1973). The uniqueness of the human karyotype. In: Caspersson T, Zech L, editors. Chromosome Identification –- Technique and Application in Biology and Medicine. Nobel Symposium. Medicine and Natural Sciences. New York: Academic Press, pp. 145–51.

    Google Scholar 

  38. Jones KW, Corneo G (1971). Location of satellite and homogeneous DNA sequences on human chromosomes. Nature (Lond.) New Biol. 233: 268–71.

    Article  CAS  Google Scholar 

  39. Jones KW, Prosser J, Corneo G, Ginelli E (1973). The chromosomal localisation of human satellite DNA III. Chromosoma. 42: 445–51.

    Article  PubMed  CAS  Google Scholar 

  40. Jones KW, Purdom IF, Prosser J, Corneo G (1974). The chromosomal localisation of human satellite DNA I. Chromosoma. 49: 161–71.

    Article  PubMed  CAS  Google Scholar 

  41. Gosden JR, Mitchell AR, Buckland RA, Clayton RP, Evans HJ (1975). The location of four human satellite DNAs on human chromosomes. Exp Cell Res. 92: 148–58.

    Article  PubMed  CAS  Google Scholar 

  42. Ginelli E, Corneo G (1976). The organization of repeated DNA sequences in the human genome. Chromosoma. 56: 55–68.

    Article  PubMed  CAS  Google Scholar 

  43. Miklos GLG, John B (1979). Heterochromatin and satellite DNA in man: properties and prospects. Am J Hum Genet. 31: 264–80.

    PubMed  CAS  Google Scholar 

  44. Marcais B et al. (1991). On the mode of evolution of alpha satellite DNA in human populations. J Mol Evol. 33: 42–8.

    Article  PubMed  CAS  Google Scholar 

  45. Warburton PE, Haaf T, Gosden J, Lawson D, Willard HF (1996). Characterization of a chromosome-specific chimpanzee alpha satellite subset: evolutionary relationship to subsets on human chromosomes. Genomics. 33 (2): 220–8.

    Article  PubMed  CAS  Google Scholar 

  46. Willard HF (1991). Evolution of alpha satellite. Curr Opin Genet Dev. 1: 509–14.

    Article  PubMed  CAS  Google Scholar 

  47. Meyer E, Wiegand P, Rand SP, Kuhlmann D, Brack M, Brinkmann B (1995). Microsatellite polymorphisms reveal phylogenetic relationships in primates. J Mol Evol. 41: 10–14.

    Article  PubMed  CAS  Google Scholar 

  48. Pennisi E (2000). Human genome. Finally, the book of life and instructions for navigating it. Science. 288: 2304–7.

    Article  PubMed  CAS  Google Scholar 

  49. Macilwain C (2000). World leaders heap praise on human genome landmark. Nature. 405: 983–4.

    Article  PubMed  CAS  Google Scholar 

  50. Olson S, Buckmaster J, Bissonnette J, Magenis E (1987). Comparison of maternal and fetal chromosome heteromorphisms to monitor maternal cell contamination in chorionic villus samples. Prenat Diagn. 7: 413–17.

    Article  PubMed  CAS  Google Scholar 

  51. Hauge M, Poulsen H, Halberg A, Mikkelsen M (1975). The value of fluorescence markers in the distinction between maternal and fetal chromosomes. Humangenetik. 26: 187–91.

    PubMed  CAS  Google Scholar 

  52. Olson SB, Magenis RE, Rowe SI, Lovrien EW (1983). Chromosome heteromorphism analysis in cases of disputed paternity. Am J Med Genet. 15: 47–55.

    Article  PubMed  CAS  Google Scholar 

  53. Olson SB, Magenis RE, and Lovrien EW (1986). Human chromosome variation: the discriminatory power of Q-band heteromorphism (variant) analysis in distinguishing between individuals, with specific application to cases of questionable paternity. Am J Hum Genet. 38: 235–52.

    PubMed  CAS  Google Scholar 

  54. Gürtler H, Niebuhr E (1981). The use of chromosome variants in paternity cases. In: 9. Internatianale Tagung der Gesellschaft fur forensisch Blutgruppenkund, Bern: Wurzburg, Schmitt & Meyer, pp. 597–601.

    Google Scholar 

  55. Magenis RE, Overton KM, Chamberlin J, Brady T, Lovrien E (1977). Prenatal origin of the extra chromosome in Down’s syndrome. Hum Genet. 37: 7–16.

    Article  PubMed  CAS  Google Scholar 

  56. Juberg RC, Mowrey PN (1983). Origin of nondisjunction in trisomy 21 syndrome: all studies compiled, parental age analysis, and internal comparisons. Am J Med Genet. 16: 111–16.

    Article  PubMed  CAS  Google Scholar 

  57. Mikkelsen M, Poulsen H, Grinsted J, Lange A (1980). Non-disjunction in trisomy 21: study of chromosomal heteromorphisms in 110 families. Ann Hum Genet. 44: 17–28.

    Article  PubMed  CAS  Google Scholar 

  58. Jacobs PA, Szulman AE, Funkhouser J, Matsuura JS, Wilson CC (1982). Human triploidy: relationship between parental origin of the additional haploid complement and development of partial hydatidiform mole. Ann Hum Genet. 46: 223–31.

    Article  PubMed  CAS  Google Scholar 

  59. Lorber BJ, Grantham M, Peters J, Willard HF, Hassold TJ (1992). Nondisjunction of chromosome 21: comparisons of cytogenetic and molecular studies of meiotic stage and parent of origin. Am J Hum Genet. 51: 1265–76.

    PubMed  CAS  Google Scholar 

  60. Redline RW, Hassold T, Zaragoza MV (1998). Prevalences of partial molar phenotype in triploidy of maternal and paternal origin. Hum Pathol. 29: 505–11.

    Article  PubMed  CAS  Google Scholar 

  61. Zaragoza MV, Surti U, Redline RW, Millie E, Chakravarti A, Hassold TJ (2000). Parental origin and phenotype of triploidy in spontaneous abortions: predominance of diandry and association with the partial hydatidiform mole. Am J Hum Genet. 66: 1807–20.

    Article  PubMed  CAS  Google Scholar 

  62. Hopman AHN, Raap AK, Landegent JE, Wiegant J, Boerman RH, Van der Ploeg M (1988). Nonradioactive in situ hybridization. In: Molecular Neuroanatomy. Amsterdam: Elvesier, editor. pp. 43–68.

    Google Scholar 

  63. Stergianou K, Gould CP, Walters JJ, Hulten MA (1993). A DA/DAPI positive human 14p heteromorphism defined by in situ hybridization using chromosome 15-specific probes D15Z1 (satellite III) and p-TRA-25 (alphoid). Hereditas. 119: 105–10.

    Article  PubMed  CAS  Google Scholar 

  64. Ballif BC, Kashork CD, Shaffer LG (2000). The promise and pitfalls of telomere region-specific probes. Am J Hum Genet. 67: 1356–9.

    PubMed  CAS  Google Scholar 

  65. Jacobs PA (1977). Human chromosome heteromorphisms (variants). Progr Med Genet. 2: 251–74.

    CAS  Google Scholar 

  66. Mazzarella R, Schlessinger D (1998). Pathological consequences of duplications in the human genome. Genome Res. 8: 1007–21.

    PubMed  CAS  Google Scholar 

  67. Lupski JR (1998). Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet. 14: 417–22.

    Article  PubMed  CAS  Google Scholar 

  68. Ji Y, Eichler EE, Schwartz S, Nicholls RD (2000). Structure of chromosome duplicons and their role in mediating human genomic disorders. Genome Res. 10: 597–610.

    Article  PubMed  CAS  Google Scholar 

  69. Emanuel BS, Shaikh TH (2001). Segmental duplications: an expanding role in genomic instability and disease. Nature Rev. 2: 791–800.

    CAS  Google Scholar 

  70. Farrel SA, Winsor EJT, Markovik VD (1993). Moving satellites and unstable chromosome translocations. Am J Med Genet. 46: 715–20.

    Article  Google Scholar 

  71. Gimelli G, Porro E, Santi F, Scappaticci S, Zuffardi O (1976). “Jumping” satellites in three generations: a warning for paternity tests and prenatal diagnosis. Hum Genet. 34:315–18.

    Google Scholar 

  72. Livingston GK, Lockey JE, Witt KS, Rogers SW (1985). An unstable giant satellite associated with chromosomes 21 and 22 in the same individual. Am J Hum Genet. 37: 553–60.

    PubMed  CAS  Google Scholar 

  73. Howard-Peebles PN, Stoddard GR (1979). Pericentric inversions of chromosome number 9: Benign or harmful? Hum Hered. 29: 111–17.

    Article  PubMed  CAS  Google Scholar 

  74. Luke S, Verma RS (1993). Genetic consequences of euchromatic band within 9qh region. Am J Med Genet. 45: 107.

    Article  PubMed  CAS  Google Scholar 

  75. Samonte RV, Conte RA, Ramesh KH, Verma RS (1996). Molecular cytogenetic characterization of breakpoints involving pericentric inversions of human chromosome 9. Hum Genet. 98: 576–80.

    Article  PubMed  CAS  Google Scholar 

  76. Ramesh KH, Verma RS (1996). Breakpoints in alpha, beta and satellite III DNA sequences of chromosome 9 result in a variety of pericentric inversions. J Med Genet. 33: 395–8.

    Article  PubMed  CAS  Google Scholar 

  77. Lau, YF (1999). Gonadoblastoma, testicular and prostrate cancers and the TSPY gene. Am J Hum Genet. 64: 921–27.

    Article  PubMed  CAS  Google Scholar 

  78. Lau Y, Chou P, Iezzoni J, Alonzo J, Komuves L (2000). Expression of a candidate gene for the gonadoblastoma locus in gonadoblastoma and testicular seminoma. Cytogenet Cell Genet. 91: 160–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wyandt, H.E. (2004). Introduction. In: Wyandt, H.E., Tonk, V.S. (eds) Atlas of Human Chromosome Heteromorphisms. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0433-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0433-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6296-3

  • Online ISBN: 978-94-017-0433-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics