Skip to main content

On Flames as Discontinuity Surfaces in Gasdynamic Flows

  • Chapter
A Celebration of Mathematical Modeling

Abstract

Viewed on a hydrodynamic scale, flames in experiments are often thin so that they may be described as gasdynamic discontinuities separating the dense, cold fresh mixture from the light, hot burned products. In addition to the fluid dynamical equations, the model of a flame as a discontinuity surface consists of a flame speed relation describing the evolution of the surface, and jump conditions across the surface which relate the fluid variables on the two sides of the surface. Models of flames as gasdynamic discontinuities exist, some merely postulated and others derived from the more general equations governing the reactive fluid dynamics. However, none is capable of both capturing all the relevant instabilities and exhibiting a high wave number cutoff for each. Furthermore, the derived models are appropriate only for restricted values of the Lewis number, the ratio of the thermal diffusivity of the mixture to the mass diffusivity of the deficient reactive component. In this paper, we derive a model consisting of a new flame speed relation and new jump conditions, which is valid for arbitrary Lewis numbers. It captures all the relevant instabilities, including the hydrodynamic, cellular and pulsating instabilities and exhibits a high wave number cutoff for each. The flame speed relation includes the effect of short wave lengths, not previously considered, which leads to stabilizing transverse surface diffusion terms. The surface to which the flame zone shrinks is here chosen to be located at a position different from that in previous theories, which leads to clear and simple physical interpretations of the jump conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.I. Barenblatt, Y.B. Zeldovich, A.G Istratov, “On diffusional thermal instability of laminar flame”, Prikl. Mekh. Tekh. Fiz. 2, 21–26, 1962.

    Google Scholar 

  2. R.N. Buchal, J.B, Keller, “Boundary layer problems in diffraction theory”, Comm. Pure Appl. Math. 13: 85–114, 1960.

    MathSciNet  MATH  Google Scholar 

  3. A.G. Class, B.J. Matkowsky, A.Y. Klimenko, “A Unified Model of Flames as Gasdynamic Discontinuities”, J. Fluid Mech., 491: 11–49, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  4. A.G. Class, B.J. Matkowsky, A.Y. Klimenko, “Stability of planar flames as gasdynamic discontinuities”. J. Fluid Mech., 491: 51–63, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Clavin, F.A. Williams, “Effects of molecular diffusion and of thermal expansion on the structure and dynamics of premixed flames in turbulent flows of large scales and low intensity”, J. Fluid. Mech. 116: 251–282, 1982.

    Article  MATH  Google Scholar 

  6. G. Darrieus, “Propagation d’un front de flamme”, Presented at La Technique Moderne and Le Congrés de Mechanique Appliquée, Paris, 1938 and 1945.

    Google Scholar 

  7. W. Eckhaus, “Theory of flame-front stability”, J. Fluid Mech. 10: 80–100, 1961.

    Article  MathSciNet  MATH  Google Scholar 

  8. J.W. Gibbs, “On the equilibrium of heterogeneous substances”, Trans. Conn. Acad. 3: 108–248, 1876 and 343–524, 1878.

    Google Scholar 

  9. J.W. Gibbs, “Abstract of ‘on the equilibrium of heterogeneous substances”’, Amer. J. Sci., ser. 3, 18: 277–293 and 371–387, 1879.

    Google Scholar 

  10. A. Golovin, B.J. Matkowsky, A. Bayliss, A. Nepomnyashchy, “Coupled KS-CGL and coupled Burgers-CGL equations for flames governed by a sequential reaction”, Physica D 129: 253–298, 1999.

    Google Scholar 

  11. A. Golovin, B.J. Matkowsky, A. Nepomnyashchy, “A complex SwiftHohenberg equation coupled to the Goldstone mode in the nonlinear dynamics of flames”, Physica D 179: 183–210, 2003.

    Google Scholar 

  12. G.J. Habetler, B.J. Matkowsky, “Uniform asymptotic expansions in transport theory with small mean free paths and the diffusion approximation”, J. Math. Phys. 16: 846–854, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Karlovitz, D.W. Denniston, H.D. Knapschaefer, F.E. Wells, “Studies on turbulent flames”, Fourth Symposium (Int.) on Combustion, The Combustion Institute, 613–620, 1953.

    Google Scholar 

  14. J.B. Keller, “Rays, waves and asymptotics”, Bull. Amer. Math. Soc. 84: 727–750, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  15. J.B. Keller, S. Antman, (eds.), Bifurcation theory of nonlinear eigenvalue problems, Benjamin, 1969.

    Google Scholar 

  16. J.B. Keller, R.M. Lewis, “Asymptotic methods for partial differential equations: the reduced wave equation and Maxwell’s equations”, in Surveys in Applied Mathematics 1, J.B. Keller, D.W. McLaughlin, G.C. Papanicolaou, eds. Plenum, 1995.

    Google Scholar 

  17. J.B. Keller, R.M. Lewis, “Asymptotic methods for partial differential equations: the reduced wave equation and Maxwell’s equations”, Courant Institute Research Report EM-194, 1964.

    Google Scholar 

  18. J.B. Keller, S.I. Rubinow, “Asymptotic solution of eigenvalue problems”, Ann. Phys. 9: 24–75, 1960.

    Article  MATH  Google Scholar 

  19. ] J.B. Keller, M.L. Weitz, “A Theory of Thin Jets”, Proc. Ninth Int’l. Cong. Appl. Mech. 1, 316–323. Brussels, Belgium, 1957.

    Google Scholar 

  20. J.B. Keller, M.L. Weitz, “Thin Unsteady Heavy Jets”, Report IMMNYU 186 - Inst. Math. Sci., New York Univ., 1952.

    Google Scholar 

  21. A.Y. Klimenko, A.G. Class, “On premixed flames as gasdynamic discontinuities: A simple approach to derive their propagation speed”, Comb. Sci. and Tech. 160: 25–37, 2000.

    Article  Google Scholar 

  22. C. Knessl, B.J. Matkowsky, Z. Schuss, C. Tier, “An asymptotic theory of large deviations for Markov jump processes”, SIAM J. Appl. Math 45: 1006–1028, 1985.

    MathSciNet  MATH  Google Scholar 

  23. L.D. Landau, “On the theory of slow combustion”, Acta Physicochimic URSS 19: 77–85, 1944.

    Google Scholar 

  24. G.H. Markstein, “Experimental and theoretical studies of flame front stability”, J. Aero. Sci. 18: 199–209, 1951.

    Google Scholar 

  25. G.H. Markstein, ed., Nonsteady flame propagation, Pergamon, 1964.

    Google Scholar 

  26. M. Matalon, B.J. Matkowsky, “Flames as gasdynamic discontinuities”, J. Fluid Mech. 124: 239–259, 1982.

    Article  MATH  Google Scholar 

  27. M. Matalon, B.J. Matkowsky, “On the stability of plane and curved flames”, SIAM J. Appl. Math. 44: 327–343, 1984.

    MathSciNet  MATH  Google Scholar 

  28. B.J. Matkowsky, Z. Schuss, C. Knessl, C. Tier, M. Mangel, “Asymptotic solution of the Kramers Moyal equation and first passage times for Markov jump processes”, Phys. Rev A 29: 3359–3369, 1984.

    Google Scholar 

  29. B.J. Matkowsky, G.I. Sivashinsky, “An asymptotic derivation of two models in flame theory associated with the constant density approximation”, SIAM J. Appl. Math. 37: 686–699, 1979.

    MathSciNet  MATH  Google Scholar 

  30. B.J. Matkowsky, V.A. Volpert, “Nonlocal amplitude equations in reaction diffusion systems” Random and Comp. Dyn. 1: 33–58, 1992.

    MathSciNet  Google Scholar 

  31. M.H. Millman, J.B. Keller, “Perturbation theory of nonlinear boundary value problems”, J. Math. Phys. 10: 342–361, 1969.

    Article  MathSciNet  MATH  Google Scholar 

  32. P. Pelce, P. Clavin, “Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames”, J. Fluid Mech. 124: 219–237, 1982.

    Article  MATH  Google Scholar 

  33. G.I. Sivashinsky, “On a distorted flame front as a hydrodynamic discontinuity”, Acta Astronautica 3: 889–918, 1976.

    Article  MathSciNet  Google Scholar 

  34. G.I. Sivashinsky, “On flame propagation under conditions of stoichiometry”, SIAM J. Appl. Math. 39: 67–82, 1980.

    MathSciNet  MATH  Google Scholar 

  35. Y.B. Zeldovich, G.I. Barenblatt, V.B, Librovich, G.M. Makhviladze, The mathematical theory of combustion and explosions, Consultants Bureau, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Matkowsky, B.J. (2004). On Flames as Discontinuity Surfaces in Gasdynamic Flows. In: Givoli, D., Grote, M.J., Papanicolaou, G.C. (eds) A Celebration of Mathematical Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0427-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0427-4_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6526-1

  • Online ISBN: 978-94-017-0427-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics