Skip to main content

Wave Excitation on Flexible Walls in The Presence of a Fluid Flow

  • Conference paper

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 72))

Abstract

Theoretical and computational investigations of wave excitation and evolution in fully-coupled flow-structure systems are discussed. A distinguishing feature of the body of work reviewed is its attempt to shed light on how and where waves come into being in response to some form of applied excitation. Identifying the properties of such waves and their contributions to the overall system behaviour is also a key objective of the studies reviewed. The model problem of waves initiated by line excitation applied to an elastic plate adjacent to a uniform flow (Brazier-Smith & Scott 1984 and Crighton & Oswell 1991) is first described. Thereafter, work that incorporates enhancements to the structural, geometric and fluid-flow models is presented. The results of these studies are related to the findings of the progenitor model problem in order to assess its general applicability in this branch of fluid-structure interaction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahams I.D. & Wickham G.R. 2001 On transient oscillations of plates in moving fluids. Wave Motion, 33 (1), 7–24.

    Article  MathSciNet  MATH  Google Scholar 

  • Benjamin, T.B. 1960 Effects of a flexible boundary on hydrodynamic stability. J. Fluid Mech. 9, 513–532.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Benjamin, T.B. 1963 The threefold classification of unstable disturbances in flexible surfaces bounding inviscid flows. J. Fluid Mech. 16, 436–450.

    Article  ADS  MATH  Google Scholar 

  • Bers, A. 1983 Space-time evolution of plasma instabilities — absolute and convective. In Handbook of Plasma Physics, ed M.N. Rosenbluth, R. Z. Sagdeev. 1:451–517. North-Holland.

    Google Scholar 

  • Briggs, R.J. 1964 Electron-stream Interaction with Plasmas . Monograph No. 29. MIT Press.

    Google Scholar 

  • Brazier-Smith, P.R. & Scott, J.F. 1984 Stability of fluid flow in the presence of a compliant surface. Wave Motion 6, 547–560.

    Article  Google Scholar 

  • Cairns. 1979 The role of negative energy waves in some instabilities of parallel flows. J. Fluid Mech. 92, 1–14.

    Article  ADS  MATH  Google Scholar 

  • Carpenter, P.W. 1990 Status of transition delay using compliant walls. In Viscous Drag Reduction in Boundary Layers, AIAA, New York, 79–113.

    Google Scholar 

  • Carpenter, P.W. & Garrad, A.D. 1985 The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 1. Tollmien-Schlichting instabilities. J. Fluid Mech. 155, 465–510.

    Article  ADS  MATH  Google Scholar 

  • Carpenter, P.W. & Garrad, A.D. 1986 The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 2. Flow-induced surface instabilities. J. Fluid Mech. 170, 199–232.

    Article  ADS  MATH  Google Scholar 

  • Choi, K.-S., Yang, X., Clayton, B.R., Glover, E.J., Altar, M., Semenov, B.N. & Kulik, V.M. 1997 Turbulent drag reduction using compliant surfaces. Proc. Roy. Soc. A 453, 2229–2240.

    Article  ADS  MATH  Google Scholar 

  • Crighton, D.G. & Oswell, J.E. 1991 Fluid loading with mean flow. I. Response of an elastic plate to localized excitation. Phil. Trans. R. Soc. Lond. A 335, 557–592.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Ellen, C.H. 1973 The stability of simply supported rectangular surfaces in unifrom subsonic flow. Trans. ASME E95, 68–72.

    Google Scholar 

  • Gad-el-Hak, M., Blackwelder, R.F. & Riley, J.F. 1984 On the interaction of complaint coatings with boundary-layer flows. J. Fluid Mech. 140, 257–280.

    Article  ADS  Google Scholar 

  • Kelbert, M & Sazonov, I. 1996 Pulses and other wave processes in fluids. Modern Approaches in Geophysics. Kluwer Academic.

    Book  Google Scholar 

  • Landahl, M.T. 1962 On the stability of a laminar incompressible boundary layer over a flexible surface. J. Fluid Mech. 13, 609–632.

    Article  ADS  MATH  Google Scholar 

  • de Langre, E. 2001 Absolutely unstable waves in inviscid hydorelastic systems J. Sound Vib., submitted.

    Google Scholar 

  • Lighthill, M.J. 1960 Studies on magnetohydrodynamic waves and other anisotropic wave motions. . Phil. Trans. R. Soc. Lond.. 252, 397–430.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lingwood, R.J. & Peake, N. 1999 On the causal behaviour of flow over a compliant wall. J. Fluid. Mech., 396, 319–344.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lucey, A.D. 1998 The excitation of waves on a flexible panel in a uniform flow. Phil. Trans. R. Soc. Lond. 356, 2999–3039.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lucey, A.D. & Carpenter 1992 A numerical simulation of the interaction of a compliant wall and an inviscid flow. J. Fluid Mech., 234, 121–146.

    Article  ADS  MATH  Google Scholar 

  • Lucey, A.D. & Carpenter 1995 Boundary layer instability over compliant walls: comparison between experiment and theory. Phys. Fluids, 7, 2355–2363.

    Article  MathSciNet  ADS  Google Scholar 

  • Lucey, A.D., Cafolla, G.J., Carpenter, P.W. & Yang, M. 1997 The nonlinear hydroelastic behaviour of flexible walls. J. Fluids & Structures, 11,717–744.

    Article  ADS  Google Scholar 

  • Miles, J. 2001 Stability of inviscid shear flow over a flexible boundary. J. Fluid Mech., 434, 371–378.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Peake, N. 1997 On the behaviour of a fluid-loaded cylindrical shell with mean flow. J. Fluid. Mech., 338, 387–410.

    Article  ADS  MATH  Google Scholar 

  • Peake, N. 2001 Nonlinear stability of a fluid-loaded elastic plate with mean flow. J. Fluid Mech., 434, 101–118.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Sorokin, S.V. 2000 Nonlinear oscillations of a baffled elastic plate in heavy fluid loading conditions. J. Sound Vib. 232(3), 619–643.

    Article  ADS  Google Scholar 

  • Weaver, D.S. & Unny T.S. 1971 The hydroelastic instability of a flat plate. Trans. ASME E37, 823–827.

    Google Scholar 

  • Zakharov, V.E. & Shabat, A.B. 1972 Exact theory of two-dimensional self-focusing and one-dimensional self-modulating waves in nonlinear media. Sov. Phys. J.E.T.P, 34, 62–69.

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Lucey, A.D., Peake, N. (2003). Wave Excitation on Flexible Walls in The Presence of a Fluid Flow. In: Carpenter, P.W., Pedley, T.J. (eds) Flow Past Highly Compliant Boundaries and in Collapsible Tubes. Fluid Mechanics and Its Applications, vol 72. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0415-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0415-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6235-2

  • Online ISBN: 978-94-017-0415-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics