Skip to main content

Hydrodynamic Stability of Flow Through Compliant Channels and Tubes

  • Conference paper
Flow Past Highly Compliant Boundaries and in Collapsible Tubes

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 72))

Abstract

The laminar flow in channels and tubes with compliant walls is destabilised by a variety of mechanisms, especially at moderate and low Reynolds number. There have been two types of classification schemes used for these instabilities. The first is the classification, adopted from boundary layer flow past compliant panels, into the Tollmien-Schlichting modes (Class A), the traveling-wave flutter (Class B) and the static divergence (Class C). The second is based on the Reynolds number regime, the flow structure, the scaling of the critical Reynolds number (ρVR/μ) with the dimensionless parameter Σ = (ρGR 2 /μ2 ), and the mechanism that destabilises the flow. Here, p and μ are the fluid density and viscosity, G is the shear modulus of the wall material, R is the cross-stream length scale and V is the maximum velocity. Linear stability analyses based on both of these classification schemes are discussed, with focus on flows which do not admit Tollmien-Schlichting waves, such as the Couette flow in a channel and the Poiseuille flow in a tube. The weakly non-linear studies carried out so far are briefly summarised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benjamin, T. B. (1963) The threefold classification of unstable disturbances in flexible surfaces bounding inviscid flows. J. Fluid Mech., 16, 436–450.

    Article  ADS  MATH  Google Scholar 

  • Carpenter, P. W. and Garrad, A. D. (1985) The hydrodynamic stability of flows over Kramer — type compliant surfaces. Part 1. Tollmien — Schlichting instabilities. J. Fluid Mech., 155, 465–510.

    Article  ADS  MATH  Google Scholar 

  • Carpenter, P. W. and Garrad, A. D. (1986) The hydrodynamic stability of flows over Kramer — type compliant surfaces. Part 2. Flow-induced surface instabilities. J. Fluid Mech., 170, 199–232.

    Article  ADS  MATH  Google Scholar 

  • Carpenter, P. W. and Morris, P. J. (1990) Effect of anisotropic wall compliance on boundary layer stability, J. Fluid Mech. 218, 171–223.

    Article  ADS  MATH  Google Scholar 

  • Davies, C. and Carpenter, P. W. (1997) Instabilities in a plane channel flow between compliant walls, J. Fluid Mech. 352, 205–243.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Drazin, P. G. and Reid, W. H. (1981) Hydrodynamic Stability, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Gajjar, J. S. B., Gibson, A. and Sen, P.K. (2002) Instabilities in compliant pipe and related flows, presentation at IUTAM Symp. on Flow in Collapsible Tubes and past Other Highly Compliant Boundaries, University of Warwick, England, 26 – 30 March.

    Google Scholar 

  • Green, C. H., and Ellen, C. H. (1972) The stability of a plane Poiseuille flow between flexible walls, J. Fluid Mech. 51, 403–416.

    Article  ADS  MATH  Google Scholar 

  • Grotberg, J. B. and Reiss, E. L. (1984) Subsonic flapping flutter, J. Sound Vib. 92, 349–361.

    Article  ADS  MATH  Google Scholar 

  • Grotberg, J. B. and Shee, T. R. (1985) Compressible flow channel flutter, J. Fluid Mech. 159, 175–193.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hains, F. D. and Price, J. F. (1962) Effect of a flexible wall on the stability of Poiseuille flow, Phys. Fluids 5, 365–365.

    Article  ADS  Google Scholar 

  • Hamadiche, M. and Gad-el-Hak, M (2002) Temporal stability of flow through viscoelastic tubes, in press, J. Fluids Structures.

    Google Scholar 

  • Kumaran, V., Fredrickson, G. H. and Pincus, P. (1994) Flow induced instability at the interface between a fluid and a gel at low Reynolds number, J. Phys. France II 4, 893–911.

    Article  Google Scholar 

  • Kumaran, V. (1995a) Stability of the viscous flow of a fluid through a flexible tube, J. Fluid Mech. 294, 259–281.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kumaran, V. (1995b) Stability of the flow of a fluid through a flexible tube at high Reynolds number, J. Fluid Mech. 302, 117–139.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kumaran, V. (1996) Stability of an inviscid flow in a flexible tube, J. Fluid Mech. 320, 1–17.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kumaran, V. (1998a) Stability of fluid flow in a flexible tube at intermediate Reynolds number, J. Fluid Mech. 357, 123–140.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kumaran, V. (1998b) Stability of wall modes in a flexible tube, J. Fluid Mech. 362, 1–15.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kumaran, V. (1998c) Asymptotic analysis of wall modes in a flexible tube, Euro. Phys. J. B 4, 519–527.

    Article  ADS  Google Scholar 

  • Kumaran, V. (2000) Classification of instabilities in the flow past flexible surfaces, Current Science 79, 766–773.

    Google Scholar 

  • Kumaran, V. and Muralikrishnan, R. (2000) Spontaneous growth of fluctuations in the viscous flow of a fluid past a soft interface, Phys. Rev. Lett. 84, 3310–3313.

    Article  ADS  Google Scholar 

  • Kumaran, V. and Srivatsan, L. (1998) Stability of fluid flow past a membrane, Euro. Phys. J. B 2, 259–266.

    Article  ADS  Google Scholar 

  • LaRose, P. G. and Grotberg, J. B. (1997) Flutter and long wave instabilities in compliant channels conveying developing flows, J. Fluid Mech. 331, 37–58.

    Article  ADS  MATH  Google Scholar 

  • Muralikrishnan, R. and Kumaran, V. (2002) Experimental study of the instability of fluid flow past a flexible surface, Phys. Fluids 14, 775–780.

    Article  ADS  Google Scholar 

  • Pierce, R. (1992) The Ginzburg — Landau equation for interfacial instabilities. Phys. Fluids A 4, 2486–2494.

    Article  ADS  MATH  Google Scholar 

  • Rottenberry, J. M. and Saffman, P. G. (1990) Effect of compliant boundaries on the weakly nonlinear shear waves in a channel flow. SIAM J. Appl. Math. 50, 361–394.

    Article  MathSciNet  ADS  Google Scholar 

  • Rottenberry, J. M. (1992) Finite-amplitude shear waves in a channel with compliant boundaries. Phys. Fluids A 4, 270–276.

    Article  ADS  Google Scholar 

  • Sen, P. K., and Arora, D. S. (1988) On the stability of laminar boundary layer flow over a flat plate with a compliant surface, J. Fluid Mech. 197, 201–240.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Shankar, V. and Kumaran, V. (1999) Stability of non-parabolic flows in a flexible tube, J. Fluid Mech. 395, 211–236.

    Article  ADS  MATH  Google Scholar 

  • Shankar, V. and Kumaran, V. (2000) Stability of non-axisymmetric modes in a flexible tube, J. Fluid Mech. 407, 291–314.

    Article  ADS  MATH  Google Scholar 

  • Shankar, V. and Kumaran, V. (2001a) Asymptotic analysis of wall modes in a flexible tube revisited, Euro. Phys. J. B 19, 607–622.

    Article  ADS  Google Scholar 

  • Shankar, V. and Kumaran, V. (2001b) Weakly non — linear analysis of the viscous flow of a fluid past a flexible surface, J. Fluid Mech. 434, 337–354.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Shankar, V. and Kumaran, V. (2002) Stability of wall modes in flow past a flexible surface, in press, Phys. Fluids

    Google Scholar 

  • Srivatsan, L. and Kumaran, V. (1997) Flow induced instability of the interface between a fluid and a gel, J. Phys. II (France), 7, 947–963.

    Article  Google Scholar 

  • Thaokar, R. M., Shankar, V. and Kumaran, V. (2001) Effect of tangential interface motion on the viscous instability in the fluid flow past flexible surfaces, Euro. Phys. J. B 23, 533–550.

    Article  ADS  Google Scholar 

  • Thaokar, R. M. and Kumaran, V. (2002) ‘Stability of fluid flow past a membrane’, in press, J. Fluid Mech.

    Google Scholar 

  • Weaver, D. H. and Paidoussis, M. P. (1977) On collapse and flutter phenomena in thin tubes conveying fluids, J. Sound Vib. 50, 117–132.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Kumaran, V. (2003). Hydrodynamic Stability of Flow Through Compliant Channels and Tubes. In: Carpenter, P.W., Pedley, T.J. (eds) Flow Past Highly Compliant Boundaries and in Collapsible Tubes. Fluid Mechanics and Its Applications, vol 72. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0415-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0415-1_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6235-2

  • Online ISBN: 978-94-017-0415-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics