Skip to main content

Flows in Deformable Tubes and Channels

Theoretical Models and Biological Applications

  • Conference paper
Flow Past Highly Compliant Boundaries and in Collapsible Tubes

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 72))

Abstract

This chapter gives an overview of the main physiological applications of collapsible tube flows and reviews the major theoretical and computational developments of the past twenty-five years, ranging from lumped-parameter models to threedimensional Navier—Stokes simulations. We also discuss some of the significant questions that, despite substantial progress, still remain open.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aittokallio, T., M. Gyllenberg, and O. Polo: 2001, ‘A model of a snorer’s upper airway’. Math. Biosci. 170, 79–90.

    Article  MathSciNet  MATH  Google Scholar 

  • Armaly, B. F., F. J. Durst, C. F. Pereira, and B. Schonung: 1983, ‘Experimental and theoretical investigation of backward-facing step flow’. Journal of Fluid Mechanics 127, 473–496.

    Article  ADS  Google Scholar 

  • Balint, T. S.: 2001, ‘Dynamics of the upper airway’. Ph.D. thesis, University of Warwick, Warwick.

    Google Scholar 

  • Benjamin, T.: 1963, ‘The threefold classification for unstable disturbances in flexible surfaces bounding inviscid flows’. Journal of Fluid Mechanics 16, 436–450.

    Article  ADS  MATH  Google Scholar 

  • Berke, G. S., D. C. Green, M. E. Smith, D. P. Arnstein, V. Honrubia, M. Natividad, and W. A. Conrad: 1991, ‘Experimental-Evidence in the Invivo Canine for the Collapsible Tube Model of Phonation’. Journal of the Acoustical Society of America 89, 1358–1363.

    Article  ADS  Google Scholar 

  • Bertram, C.: 1986, ‘Unstable equilibrium behavior in collapsible tubes’. Journal of Biomechanics 19, 61–69.

    Article  Google Scholar 

  • Bertram, C. D. and S. A. Godbole: 1997, ‘LDA measurements of velocities in a simulated collapsed tube’. ASME Journal of Biomechanical Engineering 119, 357–363.

    Article  Google Scholar 

  • Bertram, C. D. and T. J. Pedley: 1982, ‘A mathematical model of unsteady collapsible tube behaviour’. Journal of Biomechanics 15, 39–50.

    Article  Google Scholar 

  • Bertram, C. D. and C. J. Raymond: 1991, ‘Measurements of wave speed and compliance in a collapsible tube during self-excited oscillations: a test of the choking hypothesis’. Medical and Biological Engineering and Computing 29, 493–500.

    Article  Google Scholar 

  • Bertram, C. D., C. J. Raymond, and K. S. A. Butcher: 1989, ‘Oscillations in a collapsed-tube analog of the brachial artery under a sphygmomanometer cuff’. ASME Journal of Biomechanical Engineering 111, 185–191.

    Article  Google Scholar 

  • Bertram, C. D., C. J. Raymond, and T. J. Pedley: 1990, ‘Mapping of instabilities for flow through collapsible tubes of differering length’. Journal of Fluids and Structures 4, 125–153.

    Article  ADS  Google Scholar 

  • Bertram, C. D., C. J. Raymond, and T. J. Pedley: 1991, ‘Application of nonlinear dynamics concepts to the analysis of self-excited oscillations of a collapsible tube conveying a fluid’. Journal of Fluids and Structures 5, 391–426.

    Article  ADS  Google Scholar 

  • Binns, R. L. and D. N. Ku: 1989, ‘Effect of stenosis on wall motion — a possible mechanism of stroke and transient ischemic attack’. Arteriosclerosis 9, 842–847.

    Article  Google Scholar 

  • Bogdanova, E. V. and O. S. Rhyzov: 1983, ‘Free and induced oscillations in Poiseuille flow’. Quarterly Journal of Mechanics and Applied Mathematics 36, 271–287.

    Article  ADS  Google Scholar 

  • Bonis, M. and C. Ribreau: 1978, ‘Etude de quelques proprietes de l’ecoulement dans une conduite collabable’. La Houille Blanche 3/4, 165–173.

    Article  Google Scholar 

  • Brook, B. S.: 1997, ‘The effect of gravity on the haemodynamics of the giraffe jugular vein’. Ph.D. thesis, University of Leeds, Leeds.

    Google Scholar 

  • Brook, B. S., S. A. E. G. Falle, and T. J. Pedley: 1999, ‘Numerical solutions for unsteady gravitydriven flows in collapsible tubes: evolution and roll-wave instability of a steady state’. Journal of Fluid Mechanics 396, 223–256.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Brook, B. S. and T. J. Pedley: 2001, ‘A model for time-dependent flow in (giraffe jugular) veins: Uniform tube properties’. Journal of Biomechanics. (in print).

    Google Scholar 

  • Brower, R. W. and C. Scholten: 1975, ‘Experimental evidence on the mechanism for the instability of flow in collapsible vessels’. Medical and Biological Engineering 13, 839–845.

    Article  Google Scholar 

  • Cai, Z. and X. Y. Luo: 2001, ‘A fluid-beam model for flow in collapsible channels’. (Preprint).

    Google Scholar 

  • Cancelli, C. and T. J. Pedley: 1985, ‘A separated-flow model for collapsible-tube oscillations’. Journal of Fluid Mechanics 157, 375–404.

    Article  ADS  Google Scholar 

  • Carew, E. O. and T. J. Pedley: 1997, ‘An active membrane model for peristaltic pumping .1. Periodic activation waves in an infinite tube’. ASME Journal of Biomechanical Engineering 119, 66–76.

    Article  Google Scholar 

  • Carpenter, P. W., K. Berkouk, and A. D. Lucey: 1999, ‘A theoretical model of pressure propagation in the human spinal CSF system’. Engineering Mechanics 6, 213–228.

    Google Scholar 

  • Carpenter, P. W., K. Berkouk, and A. D. Lucey: 2001a, ‘Pressure wave propagation in fluid-filled co-axial elastic tubes. Part 1: Basic theory’. (Submitted).

    Google Scholar 

  • Carpenter, P. W., K. Berkouk, and A. D. Lucey: 2001b, ‘Pressure wave propagation in fluid-filled co-axial elastic tubes. Part 2: Mechanisms for the pathogenesis of syringomyelia’. (Submitted).

    Google Scholar 

  • Chang, H.-C. and E. A. Demekhin: 1996, Solitary wave formation and dynamics on falling films’. Adv. Appl. Mech. 32, 1–58.

    Article  Google Scholar 

  • Conrad, W. A.: 1969, ‘Pressure-Flow relationship in collapsible tubes’. IEEE Transactions on bio-medical engineering BME-16, 284–295.

    Article  Google Scholar 

  • Cowley, S. J.: 1981, ‘High Reynolds number flows through channels and tubes’. Ph.D. thesis, University of Cambridge, Cambridge.

    Google Scholar 

  • Cowley, S. J.: 1982, ‘Elastic jumps on fluid-filled elastic tubes’. Journal of Fluid Mechanics 116, 459–473.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Cowley, S. J.: 1983, ‘On the wavetrains associated with elastic jumps on fluid-filled elastic tubes’. Q. J. Mech. Appl. Math. 36, 289–312.

    Article  MathSciNet  MATH  Google Scholar 

  • Dai, G., J. P. Gertler, and R. D. Kamm: 1999, ‘The effects of external compression on venous blood flow and tissue deformation in the lower leg’. ASME Journal of Biomechanical Engineering 121, 557–564.

    Article  Google Scholar 

  • Danahy, D. T. and J. A. Ronan: 1974, ‘Cervical venous hum in patients on chronic hemodialysis’. New England Journal of Medicine 291, 237–239.

    Article  Google Scholar 

  • Davies, C. and P. W. Carpenter: 1997a, ‘Instabilities in a plane channel flow between compliant walls’. Journal of Fluid Mechanics 352, 205–243.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Davies, C. and P. W. Carpenter: 1997b, ‘Numerical simulation of the evolution of Tollmien-Schlichting waves over finite compliant panels’. Journal of Fluid Mechanics 335, 361–392.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Dawson, S. V. and E. A. Elliot: 1977, ‘Wave-speed limitation on expiratory flow — a unifying concept’. Journal of Applied Physiology 43, 498–515.

    Google Scholar 

  • Dressler, R. F.: 1949, ‘Mathematical solution of the problem of roll-waves in inclined open channels’. Communications on Pure and Applied Mathematics 2, 149–194.

    Article  MathSciNet  MATH  Google Scholar 

  • Elad, D., R. D. Kamm, and A. H. Shapiro: 1987, ‘Choking Phenomena in a lung-like model’. ASME Journal of Biomechanical Engineering 109, 1–9.

    Article  Google Scholar 

  • Elad, D., M. Sahar, J. M. Avidor, and S. Einav: 1992, ‘Steady flow through collapsible tubes: measurements of flow and geometry’. ASME Journal of Biomechanical Engineering 114, 84–91.

    Article  Google Scholar 

  • Elliot, E. A. and S. V. Dawson: 1977, ‘Test of wave-speed theory of flow limitation in elastic tubes’. Journal of Applied Physiology 43, 516–522.

    Google Scholar 

  • F. T. Smith, F. T. Smith and O. R. Burggraf: 1985, ‘On the development of large-sized short-scaled disturbances in boundary layers’. Proceedings of the Royal Society of London A 399, 25–55.

    ADS  Google Scholar 

  • Fee, M. S., B. Shraiman, B. Pesaran, and P. Mitra: 1998, ‘The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird’. Nature 395, 67–71.

    Article  ADS  Google Scholar 

  • Flaherty, J. E., J. B. Keller, and S. I. Rubinow: 1972, ‘Post buckling behavior of elastic tubes and rings with opposite sides in contact’. SIAM Journal of Applied Mathematics 23, 446–455.

    Article  MATH  Google Scholar 

  • Gavriely, N. and O. E. Jensen: 1993, ‘Theory and measurements of snores’. Journal of Applied Physiology 74, 2828–2837.

    Google Scholar 

  • Gavriely, N., Y. Palti, G. Airoy, and J. B. Grotberg: 1984, ‘Measurement and theory of wheezing breath sounds’. Journal of Applied Physiology 57, 481–492.

    Google Scholar 

  • Gavriely, N., T. R. Shee, D. W. Cugell, and J. B. Grotberg: 1989, ‘Flutter in flow-limited collapsible tubes: a mechanism for the generation of wheezes’. Journal of Applied Physiology 66, 2251–2261.

    Google Scholar 

  • Gregg, D. E. and L. C. Fisher: 1963, ‘Blood supply to the heart’. In: W. F. Hamilton and P. Dow (eds.): Handbook of Physiology. Section 2: Circulation, Volume II. Washington D. C.: American Physiological Society.

    Google Scholar 

  • Griffiths, D. J.: 1969, ‘Urethral elasticity and micturition hydrodynamics in females’. Medical and biological engineering and computing 7, 201–215.

    Article  Google Scholar 

  • Griffiths, D. J.: 1971, ‘Hydrodynamics of male micturition — I: Theory of steady flow through elastic-walled tubes’. Medical and biological engineering and computing 9, 581–588.

    Article  Google Scholar 

  • Grotberg, J. B.: 1994, ‘Pulmonary flow and transport phenomena’. Annual Review of Fluid Mechanics 26, 529–571.

    Article  ADS  Google Scholar 

  • Grotberg, J. B. and S. H. Davis: 1980, ‘Fluid-dynamical flapping of a collapsible channel: sound generation and flow limitation’. Journal of Biomechanics 13, 219–230.

    Article  Google Scholar 

  • Grotberg, J. B. and E. L. Reiss: 1984, ‘Subsonic flapping flutter’. Journal of Sound and Vibration 92, 349–361.

    Article  ADS  MATH  Google Scholar 

  • Grotberg, J. B. and T. R. Shee: 1985, ‘Compressible-flow channel flutter’. Journal of Fluid Mechanics 159, 175–193.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Guiot, C., P. G. Pianta, C. Cancelli, and T. J. Pedley: 1990, ‘Prediction of coronary blood-flow with a numerical-model based on collapsible tube’. American Journal of Physiology 258, H 1606–H 1614.

    Google Scholar 

  • Guneratne, J. C.: 1999, ‘High-Reynolds number flow in a collapsible channel’. Ph.D. thesis, Cambridge University, Cambridge.

    Google Scholar 

  • Guneratne, J. C. and T. J. Pedley: 2001, ‘High Reynolds number flow in a collapsible channel’. (in preparation).

    Google Scholar 

  • Hayashi, S., T. Hazase, and H. Kawamura: 1998, ‘Numerical analysis for stability and selfexcited oscillation in collapsible tube flow’. ASME Journal of Biomechanical Engineering 120, 468–475.

    Article  Google Scholar 

  • Hazel, A. L. and M. Heil: 2002, ‘Steady finite Reynolds number flow in three-dimensional collapsible tubes’. (Submitted).

    Google Scholar 

  • Heil, M.: 1995, ‘Large deformations of cylindrical shells conveying viscous flow’. Ph.D. thesis, University of Leeds, Leeds.

    Google Scholar 

  • Heil, M.: 1996, ‘The Stability of Cylindrical Shells Conveying Viscous Flow’. Journal of Fluids and Structures 10, 173–196.

    Article  ADS  Google Scholar 

  • Heil, M.: 1997, ‘Stokes flow in collapsible tubes: computation and experiment’. Journal of Fluid Mechanics 353, 285–312.

    Article  ADS  MATH  Google Scholar 

  • Heil, M. and T. J. Pedley: 1995, ‘Large Axisymmetric Deformations of Cylindrical Shells Conveying Viscous Flow’. Journal of Fluids and Structures 9, 237–256.

    Article  ADS  Google Scholar 

  • Heil, M. and T. J. Pedley: 1996, ‘Large Post-Buckling Deformations of Cylindrical Shells Conveying Viscous Flow’. Journal of Fluids and Structures 10, 565–599.

    Article  ADS  Google Scholar 

  • Huang, L.: 1995, ‘Flutter of cantilevered plates in axial flow’. Journal of Fluids and Structures 9, 127–147.

    Article  ADS  Google Scholar 

  • Huang, L.: 1998, ‘Reversal of the Bernoulli effect and channel flutter’. Journal of Fluids and Structures 12, 131–151.

    Article  ADS  Google Scholar 

  • Huang, L.: 2001, ‘Viscous flutter of a finite elastic membrane in Poiseuille flow’. Journal of Fluids and Structures 15, 1060–1088.

    Article  ADS  Google Scholar 

  • Ikeda, T. and Y. Matsuzaki: 1999, ‘A one-dimensional unsteady separable and reattachable flow model for collapsible tube-flow analysis’. ASME Journal of Biomechanical Engineering 121, 153–159.

    Article  Google Scholar 

  • Jensen, O. E.: 1990, ‘Instabilities of flow in a collapsed tube’. Journal of Fluid Mechanics 220, 623–659.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Jensen, O. E.: 1992, ‘Chaotic oscillations in a simple collapsible-tube model’. ASME Journal of Biomechanical Engineering 114, 55–59.

    Article  Google Scholar 

  • Jensen, O. E.: 1998, ‘An asymptotic model of viscous flow limitation in a highly collapsed channel’. ASME Journal of Biomechanical Engineering 120, 544–547.

    Article  Google Scholar 

  • Jensen, O. E.: 2001, ‘Self-excited oscillations in a collapsible channel: insights from a simple asymptotic model’. (Preprint).

    Google Scholar 

  • Jensen, O. E. and M. Heil: 2002, ‘High-frequency self-excited oscillations in a collapsible-channel flow’. Journal of Fluid Mechanics. (Submitted).

    Google Scholar 

  • Jensen, O. E. and T. J. Pedley: 1989, ‘The existence of steady flow in a collapsed tube’. Journal of Fluid Mechanics 206, 339–374.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kamm, R. D.: 1982, ‘Bioengineering studies of periodic external compression as prophylaxis against deep vein thrombosis — Part I: numerical studies’. ASME Journal of Biomechanical Engineering 104, 87–95.

    Article  Google Scholar 

  • Kamm, R. D. and T. J. Pedley: 1989, ‘Flow in collapsible tubes: a brief review’. ASME Journal of Biomechanical Engineering 111, 177–179.

    Article  Google Scholar 

  • Kamm, R. D. and A. H. Shapiro: 1979, ‘Unsteady flow in a collapsible tube subjected to external pressure or body forces’. Journal of Fluid Mechanics 95, 1–78.

    Article  ADS  MATH  Google Scholar 

  • Katz, A. I., Y. Chen, and A. H. Moreno: 1969, ‘Flow through a collapsible tube — Experimental analysis and mathematical model’. Biophysical Journal 9, 1261–1279.

    Article  ADS  Google Scholar 

  • Kececioglu, I., M. E. McClurken, R. D. Kamm, and A. H. Shapiro: 1981, ‘Steady, supercritical flow in collapsible tubes. Part 1. Experimental observations’. Journal of Fluid Mechanics 109, 367–389.

    Article  ADS  Google Scholar 

  • Kistler, S. F. and L. E. Scriven: 1983, ‘Coating Flows’. In: J. Pearson and S. Richardson (eds.): Computational Analysis of Polymer Processing. London: Applied Science Publishers.

    Google Scholar 

  • Ku, D. N.: 1997, ‘Blood flow in arteries’. Annual Review of Fluid Mechanics 29, 399–434.

    Article  MathSciNet  ADS  Google Scholar 

  • Landahl, M.: 1962, ‘On the stability of a laminar incompressible bounadry layer over a flexible surface’. Journal of Fluid Mechanics 13, 607–632.

    Article  ADS  Google Scholar 

  • Larose, P. G. and J. B. Grotberg: 1997, ‘Flutter and long-wave instabilities in compliant channels conveying developing flows’. Journal of Fluid Mechanics 331, 37–58.

    Article  ADS  MATH  Google Scholar 

  • Liang, S.-J., G. P. Neitzel, and C. K. Aidun: 1997, ‘Finite element computations for unsteady fluid and elastic membrane interaction problems’. International Journal for Numerical Methods in Fluids 24, 1091–1110.

    Article  ADS  MATH  Google Scholar 

  • Lighthill, J.: 1975, Mathematical biofluiddynamics. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  • Lowe, T. W. and T. J. Pedley: 1995, ‘Computation of Stokes flow in a channel with a collapsible segment’. Journal of Fluids and Structures 9, 885–905.

    Article  ADS  Google Scholar 

  • Luo, X. Y. and T. J. Pedley: 1995, ‘Numerical Simulation of Steady Flow in a 2-D Collapsible Channel’. Journal of Fluids and Structures 9, 149–197.

    Article  ADS  Google Scholar 

  • Luo, X. Y. and T. J. Pedley: 1996, ‘A numerical simulation of unsteady flow in a two-dimensional collapsible channel’. Journal of Fluids Mechanics 314, 191–225.

    Article  ADS  MATH  Google Scholar 

  • Luo, X. Y. and T. J. Pedley: 1998, ‘The effects of wall inertia on flow in a two-dimensional collapsible channel’. Journal of Fluid Mechanics 363, 253–280.

    Article  ADS  MATH  Google Scholar 

  • Luo, X. Y. and T. J. Pedley: 2000, ‘Multiple solutions and flow limitation in collapsible channel flows’. Journal of Fluid Mechanics 420, 301–324.

    Article  ADS  MATH  Google Scholar 

  • Matsuzaki, Y. and K. Fujimura: 1995, ‘Reexamination of steady solutions of a collapsible channel conveying fluid’. ASME Journal of Biomechanical Engineering 117, 492–494.

    Article  Google Scholar 

  • Matsuzaki, Y. and Y. Fung: 1977, ‘Stability analysis of straight and buckled two-dimensional channels conveying an incompressible flow’. Trans. ASME E: J. Appl. Mech. 44, 548–552.

    Article  ADS  MATH  Google Scholar 

  • Matsuzaki, Y., T. Ikeda, T. Kitagawa, and S. Sakata: 1994, ‘Analysis of flow in a two-dimensional collapsible channel using universal “tube” law’. ASME Journal of Biomechanical Engineering 116, 469–476.

    Article  Google Scholar 

  • Matsuzaki, Y. and T. Matsumoto: 1989, ‘Flow in two-dimensional collapsible channel with rigid inlet and outlet’. ASME Journal of Biomechanical Engineering 111, 180–184.

    Article  Google Scholar 

  • McClurken, M. E., I. Kececioglu, R. D. Kamm, and A. H. Shapiro: 1981, ‘Steady, supercritical flow in collapsible tubes. Part 2. Theoretical studies’. Journal of Fluid Mechanics 109, 391–415.

    Article  ADS  Google Scholar 

  • McDonald, D. A.: 1974, Blood flow in arteries. London: Edward Arnold, second edition.

    Google Scholar 

  • Moore, J. E., N. Stergiopulos, X. Golay, D. N. Ku, and J.-J. Meister: 1995, ‘Flow measurements in collapsed stenotic arterial models’. In: R. M. Hochmuth, N. A. Langrana, and M. S. Hefzy (eds.): Proceedings of the 1995 Bioengineering Conference, Vol. ASME-BED 29. pp. 229–230.

    Google Scholar 

  • Oates, G. C.: 1975, ‘Fluid flow in soft-walled tubes: I. Steady flow’. Medical and Biological Engineering 13, 773–778.

    Article  Google Scholar 

  • Olson, D. A., R. D. Kamm, and A. H. Shapiro: 1982, ‘Bioengineering studies of periodic external compression as prophylaxis against deep vein thrombosis — Part II: experimental studies on a simulated leg’. ASME Journal of Biomechanical Engineering 104, 96–104.

    Article  Google Scholar 

  • Pedley, T. J.: 1980, The fluid mechanics of large blood vessels. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Pedley, T. J.: 1992, ‘Longitudinal tension variation in collapsible channels: A new mechanism for the breakdown of steady flow’. ASME Journal of Biomechanical Engineering 114, 60–67.

    Article  Google Scholar 

  • Pedley, T. J., B. S. Brook, and R. S. Seymour: 1996, ‘Blood pressure and flow rate in the giraffe jugular vein’. Philosophical Transactions of the Royal Society of London B 351, 855–866.

    Article  ADS  Google Scholar 

  • Pedley, T. J. and X. Y. Luo: 1998, ‘Modelling Flow and Oscillations in Collapsible Tubes’. Theoretical and Computational Fluid Dynamics 10, 277–294.

    Article  ADS  MATH  Google Scholar 

  • Pedley, T. J. and K. D. Stephanoff: 1985, ‘Flow along a channel with a time-dependent indentation in one wall: the generation of vorticity waves’. Journal of Fluid Mechanics 160, 337–367.

    Article  ADS  Google Scholar 

  • Pedrizzetti, G.: 1998, ‘Fluid flow in a tube with an elastic membrane insertion’. Journal of Fluid Mechanics 375, 39–64.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Ralph, M. E. and T. J. Pedley: 1988, ‘Flow in a channel with a moving indentation’. Journal of Fluid Mechanics 190, 87–112.

    Article  ADS  Google Scholar 

  • Ralph, M. E. and T. J. Pedley: 1989, ‘Viscous and inviscid flow in a channel with a moving indentation’. Journal of Fluid Mechanics 209, 543–566.

    Article  ADS  Google Scholar 

  • Ralph, M. E. and T. J. Pedley: 1990, ‘Flow in a channel with a moving indentation in one wall’. ASME Journal of Fluids Engineering 112, 468–475.

    Article  Google Scholar 

  • Rast, M. P.: 1994, ‘Simultaneous Solution of the Navier-Stokes and Elastic Membrane Equations by a Finite-element Method’. International Journal for Numerical Methods in Fluids 19, 1115 – 1135.

    Article  ADS  MATH  Google Scholar 

  • Reyn, J. W.: 1987, ‘Multiple solutions and flow limitation for steady flow through a collapsible tube held open at the ends’. Journal of Fluid Mechanics 174, 467–493.

    Article  ADS  MATH  Google Scholar 

  • Rodbard, S.: 1966, ‘A hydrodynamics mechanism for autoregulation of flow’. Cardiologia 48, 532–535.

    Article  Google Scholar 

  • Rodbard, S. and L. Takacs: 1966, ‘Hydrodynamics of autoregulation’. Cardiologia 48, 433–440.

    Article  Google Scholar 

  • Rosenfeld, M.: 1995, ‘A numerical study of pulsating flow behind a constriction’. Journal of Fluid Mechanics 301, 203–223.

    Article  ADS  MATH  Google Scholar 

  • Shapiro, A. H.: 1977, ‘Steady flow in collapsible tubes’. ASME Journal of Biomechanical Engineering 99, 126–147.

    Article  Google Scholar 

  • Shimizu, M. and Y. Tanida: 1983, ‘On the mechanism of Korotkoff sound generation at diastole’. Journal of Fluid Mechanics 23, 299–312.

    Google Scholar 

  • Smith, F. T.: 1976a, ‘Flow through constricted or dilated pipes and channels. Part 1’. Q. J. Mech. Appl. Math. 21, 343–364.

    Article  ADS  Google Scholar 

  • Smith, F. T.: 1976b, ‘Flow through constricted or dilated pipes and channels. Part 2’. Q. J. Mech. A ppl. Math. 21, 365–379.

    Article  ADS  Google Scholar 

  • Sobey, I.: 1985, ‘Observations of waves during oscillatory channel flow’. Journal of Fluid Mechanics 151, 395–426.

    Article  ADS  Google Scholar 

  • Stephanoff, K. D., T. J. Pedley, C. J. Lawrence, and T. W. Secomb: 1983, ‘Fluid flow along a channel with an asymmetric oscillating constriction’. Nature 305, 692–695.

    Article  ADS  Google Scholar 

  • Tobak, M. and D. J. Peake: 1982, ‘Topology of three-dimensional separated flows’. Annual Review of Fluid Mechanics 14, 61–85.

    Article  MathSciNet  ADS  Google Scholar 

  • Tsuji, T., K. Nakajim, Y. Takeuchi, K. Inoue, K. Shioma, Y. Koyama, K. Tokuchi, T. Yoshikawa, and K. Suma: 1978, ‘Study on haemodynamics during cardiopulmonary bypass (in Japanese)’. Artificial Organs 7, 435–438.

    Google Scholar 

  • Tutty, O.: 1984, ‘High-Reynolds-number viscous flow in collapsible tubes’. Journal of Fluid Mechanics 146, 451–469.

    Article  ADS  MATH  Google Scholar 

  • Tutty, O.: 1989, ‘The viscous flow through symmetric collapsible channels’. Mathematika 36, 153–181.

    Article  MathSciNet  Google Scholar 

  • Tutty, O. R.: 1992, ‘Pulsatile flow in a constricted channel’. ASME Journal of Biomechanical Engineering 114, 50–54.

    Article  Google Scholar 

  • Tutty, O. R. and T. J. Pedley: 1993, ‘Oscillatory flow in a stepped channel’. Journal of Fluid Mechanics 247, 179–204.

    Article  ADS  Google Scholar 

  • Ur, A. and M. Gordon: 1970, ‘Origin of Korotkoff sounds’. American Journal of Physiology 218, 524–529.

    Google Scholar 

  • Walsh, C.: 1995, ‘Flutter in one-dimensional collapsible tubes’. Journal of Fluids and Structures 9, 393–408.

    Article  ADS  Google Scholar 

  • Walsh, C., P. Sullivan, and J. Hanson: 1991, ‘Subcritical flutter in collapsible tube flow: a model of expiratory flow in the trachea’. J. Biomech. Engng. 113, 21–26.

    Article  Google Scholar 

  • Weaver, D. and M. Paidoussis: 1977, ‘On the collapse and flutter phenomena in thin tubes conveying fluid’. Journal of Sound and Vibration 50, 117–132.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Heil, M., Jensen, O.E. (2003). Flows in Deformable Tubes and Channels. In: Carpenter, P.W., Pedley, T.J. (eds) Flow Past Highly Compliant Boundaries and in Collapsible Tubes. Fluid Mechanics and Its Applications, vol 72. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0415-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0415-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6235-2

  • Online ISBN: 978-94-017-0415-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics