Skip to main content

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 72))

Abstract

The research on the hydrodynamics of compliant walls was originally inspired by the dolphin. In particular, Gray’s paradox — the belief that specific power output of the propulsive muscles must greatly exceed the mammalian norm in order to achieve the observed swimming speeds if some form of laminar-flow control were not involved — has led to a great deal of research on the use of wall compliance for drag reduction. The full assessment of Gray’s paradox is a highly multidisciplinary undertaking. Accordingly, in this chapter we review all the aspects of dolphin hydrodynamics that might have a bearing on an investigation of Gray’s paradox. There are sections on the principles of bionics, the shapes of the body and fins, the structure and characteristics of dolphin skin, swimming speeds, kinematics and dynamics of swimming, boundary-layer characteristics, drag, drag-reducing behaviour, active flow control, energetics, technological developments, and the chapter ends with a brief re-assessment of Gray’s paradox.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AGARKOV, G.B., HOMENKO, B.G. AND HADZHINSKIῐ, V. G. (1970) Morphologies of dolphins, (in Russian), Kiev: Naukova dumka.

    Google Scholar 

  • AGARKOV, G.B., BABENKO, V.V. AND FERENTS, Z.I. (1973) On innervation of the skin and skin musculature of a dolphin in connection with a hypothesis on the stabilization of the boundary-layer flow, (in Russian), Problemy Bioniki, Nauka, Moscow, 478–483.

    Google Scholar 

  • ALEYEV, Y.G. (1977) Nekton, Junk, The Hague, Netherlands.

    Book  Google Scholar 

  • ALI, R. (2002) Private communication, University of Warwick.

    Google Scholar 

  • AU, D. AND WEIHS, D. (1980a) At high speeds dolphins save energy by leaping, Nature 284, 548–550.

    Article  ADS  Google Scholar 

  • AU, D. AND WEIHS, D. (1980b) Leaping dolphins, Nature 287, 759.

    Article  ADS  Google Scholar 

  • BABENKO, V.V. (1971) Basic performance of flexible coatings and similarity criteria, (in Russian), Bionika 5, 73–75.

    Google Scholar 

  • BABENKO, V.V. (1979) Research on the skin elasticity of a live dolphin, (in Russian), Bionika 13, 43–52.

    Google Scholar 

  • BABENKO, V.V. (1981) Towards a technique for experimental research in hydrobionics, (in Russian), Bionika 15, 88–98.

    Google Scholar 

  • BABENKO, V.V. (1983) Some features of the thermal control of the epidermis of aquatic animals, (in Russian), Bionika 17, 35–39.

    Google Scholar 

  • BABENKO, V.V. (1992) On the interaction of hydrobionts with flow, (in Russian), Bionika 25, 3–11.

    Google Scholar 

  • BABENKO, V.V. (1997) Polymers submission optimization with the help of sword-shaped tips, Proc. 10th European drag reduction working meeting, Berlin, pp. 19–21.

    Google Scholar 

  • BABENKO, V.V., GNITETSKII, N.A., AND KOZLOV, L.F. (1969) Preliminary outcomes of research on the elastic properties of the skin of live dolphins, (in Russian), Bionika 3, 12–19.

    Google Scholar 

  • BABENKO, V.V., KARNASKII, M.V, AND KOROBOV, V.I. (1993) Boundary layers over elastic surfaces, (in Russian), Kiev: Naukova Dymka.

    Google Scholar 

  • BABENKO, V.V., KOZLOV, L.F., PERSHIN, S.V.SOKOLOV, V.E. AND TOMILIN, A.G. (1982) Self-regulation of the damping in the skin of cetacea during active swimming, (in Russian), Bionika 16, 3–10.

    Google Scholar 

  • BABENKO, V.V., MOROS, V.V. AND MARTYNENKO, I.I. (2000) Experience of creation of underwater remotely operated vehicles in Ukraine and perspective of their application in geological oceanography. Mineral resources of Ukraine 1, 21–25.

    Google Scholar 

  • BABENKO, V.V. AND NIKISHOVA, O.D. (1976) Some hydrodynamic principles of the skin-cover structure of some marine animals, (in Russian), Bionika 10, 27–33.

    Google Scholar 

  • BABENKO, V.V. AND SURKINA, R.M. (1969) Some hydrodynamic features of dolphin swimming, (in Russian), Bionika 3, 19–26.

    Google Scholar 

  • BABENKO, V.V. AND SURKINA, R.M. (1971) Definition of oscillating mass parameter for skin covering of some marine animals, (in Russian), Bionika 5, 94–98.

    Google Scholar 

  • BAINBRIDGE, R. (1958) The speed of swimming of fish as related to size and to the frequency and amplitude of tail beat, J. Exp. Biol. 5, 17–33.

    Google Scholar 

  • BECHERT, D.W., HOPPE, G. AND REIF, W.-E. (1985) On the drag reduction of shark skin, AIAA Paper 85–0546.

    Google Scholar 

  • BENJAMIN, T.B. (1960) Effects of a flexible boundary on hydrodynamic stability, J. Fluid Mech. 9, 513–532.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • BLAKE, R.W. (1983) Fish locomotion, Cambridge University Press.

    Google Scholar 

  • CARPENTER, P.W. AND GARRAD, A.D. (1985) The hydrodynamic stability of flow over Kramer-type compliant surfaces. Pt. 1. Tollmien-Schlichting instabilities, J. Fluid Mech. 155, 465–510.

    Article  ADS  MATH  Google Scholar 

  • CARPENTER, P.W., DAVIES, C. AND LUCEY, A.D. (2000) Hydrodynamics and compliant walls: Does the dolphin have a secret?, Current Science 79, 758–765.

    Google Scholar 

  • CARPENTER, P.W. AND MORRIS, P.J. (1990) The effects of anisotropic wall compliance on boundary-layer stability and transition, J. Fluid Mech. 218, 171–223.

    Article  ADS  MATH  Google Scholar 

  • CHENG, H.K. AND MURILLO, L.E. (1984) Lunate-tail swimming propulsion as a problem of curved lifting line in unsteady flow. Part 1. Asymptotic theory, J. Fluid Mech. 143, 327–350.

    Article  ADS  MATH  Google Scholar 

  • CHOPRA, M.G. (1974) Hydrodynamics of lunate-tail swimming propulsion, J. Fluid Mech. 64, 375–391.

    Article  ADS  MATH  Google Scholar 

  • CHOPRA, M.G. (1976) Large amplitude lunate-tail theory of fish locomotion, J. Fluid Mech. 74, 161–182.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • CHOPRA, M.G. AND KAMBE, T. (1977) Hydrodynamics of lunate-tail swimming propulsion. Part 2, J. Fluid Mech. 79, 49–69.

    Article  ADS  MATH  Google Scholar 

  • CURREN, K., BOSE, N. AND LIEN, J. (1994) Swimming kinematics of a harbor porpoise (Phocoena phocoena) and an Atlantic white-sided dolphin (Lagenorhynchus acutus), Marine Mammal Science 10, 485–492.

    Article  Google Scholar 

  • ESSAPIAN, F.S. (1955) Speed-induced skin folds in the bottle-nosed porpoise, Tursiops truncatus, Breviora Mus. Comp. Zool. 43, 1–4.

    Google Scholar 

  • FEJER, A.A. AND BACKUS, R.H. (1960) Porpoises and the bow-riding of ships under way, Nature 188, 700–703.

    Article  ADS  Google Scholar 

  • FELTS, W.J.L. (1966) Some functional and structural characteristics of cetacean fippers and flukes, in K.S. Norris (ed.), Whales, Dolphins and Porpoises, Univ. of Calif. Press, Berkeley, pp. 255–276.

    Google Scholar 

  • FISH, F.E. AND HUI, C.A. (1991) Dolphin swimming — A review, Mammalian Review, 21, 181–195.

    Article  Google Scholar 

  • FISH, F.E. AND ROHR, J.J. (1999) Review of dolphin hydrodynamics and swimming performance, Tech. Rep. 1801, Spawar Systems Center, San Diego.

    Google Scholar 

  • FITZGERALD, E.R. AND FITZGERALD, J.W. (1995) Blubber and compliant coatings for drag reduction in water. I. Viscoelastic properties of blubber and compliant coating materials, Material Science and Engineering C2, 209–214.

    Google Scholar 

  • FOCKE, H. (1965) Uber die Ursachen der hohen Schwimmgeschwindigkeiten der Delphine, Zeitschrift für Flugwissenschaften 13, 54–61.

    Google Scholar 

  • GAD-EL-HAK, M. (2002) Chap. 9 in present volume.

    Google Scholar 

  • GORDON, C.N. (1980) Leaping dolphins, Nature 287, 759.

    Article  ADS  Google Scholar 

  • GRAY, J. (1936) Studies in animal locomotion VI. The propulsive powers of the dolphin, J. Exp. Biol. 13, 192–199.

    Google Scholar 

  • GRAY, J. (1968) Animal locomotion, Weidenfeld and Nicholson, London.

    Google Scholar 

  • GROSSKREUTZ, R. (1971) Wechselwirkungen zwischen turbulenten Grenzschichten und weihen Wänden, MPI für Strömungsforschung und der Ava, Göttingen, Mitt. No. 53.

    Google Scholar 

  • HAIDER, M. AND LINDSLEY, D.B. (1964) Microvibrations in man and dolphin, Science 146, 1181–83.

    Article  ADS  Google Scholar 

  • HANSEN, R.J. and HOYT, J.G. (1984) Laminar-to-turbulent transition on a body of revolution with an extended favorable pressure gradient forebody, ASME J. of Fluids Eng. 106, 202–210.

    Article  Google Scholar 

  • HAYES, W.D. (1953) Wave-riding of dolphins, Nature 112, 1060.

    Article  ADS  Google Scholar 

  • HAYES, W.D. (1959) Wave-riding of dolphins, Science, 130, 1657–58.

    Article  ADS  Google Scholar 

  • HERRING, P.J. (1998) Dolphins glow with the flow, Nature 393, 731–732.

    Article  ADS  Google Scholar 

  • HERTEL, H. (1966) Structure, Form and Movement, Reinhold, New York.

    Google Scholar 

  • HOERNER, S.F. (1965) Fluid-dynamic drag, published by author, Brick Town, New Jersey.

    Google Scholar 

  • KARPOUZIAN, G., SPEDDING, G. and CHENG, H.K. (1990) Lunate-tail swimming propulsion. Part 2. Performance analysis, J. Fluid Mech. 210, 329–351.

    Article  ADS  MATH  Google Scholar 

  • KAYAN, V. P. (1974) On the drag coefficient of the dolphin, (in Russian), Bionika 8, 31–35.

    Google Scholar 

  • KAYAN, V. P. (1979) On the hydrodynamic characteristics of the dolphin’s caudal fin, (in Russian), Bionika 13, 9–15.

    Google Scholar 

  • KIDUN, S.M. (1979) An investigation into propagation speed of oscillations in the dolphin skin, (in Russian), Bionika 13, 52–58.

    Google Scholar 

  • KOZLOV, L.F. (1983) Theoretical Bio-Hydrodynamics, (in Russian), Naukova Dumka, Kiev.

    Google Scholar 

  • KOZLOV, L.F., SHAKALO, V.M., BUR’YANOVA, L.D. and VOROB’EV, N.N. (1974) On the influence of non-stationarity on the flow regime in the boundary layer of a Black Sea bottlenosed dolphin, (in Russian), Bionika 8, 13–16.

    Google Scholar 

  • KOZLOV, L.F. and SHAKALO, V.M. (1980) On the flow regime in the quasi-steady boundary layer over some cetaceans, (in Russian), Bionika 14, 74–81.

    Google Scholar 

  • KOZLOV, L.F., TSYGANYUK, A.I., BABENKO, V.V., HIKISHOVA, O.D. and VOROPAYEV, G.A. (1985) Experimental investigations of boundary layers, (in Russian), Naukova Dumka, Kiev.

    Google Scholar 

  • KRAMER, M.O. (1957) Boundary layer stabilization by distributed damping, J. Aero. Sci. 24, p. 459.

    Google Scholar 

  • KRAMER, M.O. (1960) Boundary layer stabilization by distributed damping, J. Amer. Soc. Nav. Eng. 72, 25–33.

    Google Scholar 

  • KRAMER, M.O. (1965) Hydrodynamics of the dolphin, Advances in Hydroscience 2, 111–130.

    Google Scholar 

  • LANG, T.G. (1975) Speed, power, and drag measurements of dolphins and porpoises, in Swimming and Flying in Nature, T.Y Wu et al., eds., Plenum Press, New York, pp. 553–571.

    Chapter  Google Scholar 

  • LANG, T.G and DAYBELL, D.A. (1963) Porpoise performance tests in a seawater tank, Nav. Ord. Test Station, Tech. Rep. 3063, China Lake, California.

    Google Scholar 

  • LANG, T.G and PRYOR, K. (1966) Hydrodynamic performance of porpoises (Stenella attenuata), Science 152, 531–533.

    ADS  Google Scholar 

  • LIGHTHILL, J. (1969) Hydrodynamics of aquatic animal propulsion — A survey, Ann. Rev. Fluid Mech. 1, 413–446.

    Article  ADS  Google Scholar 

  • LIGHTHILL, J. (1970) Aquatic animal propulsion of high hydromechanical efficiency, J. Fluid Mech. 44, 265–301.

    Article  ADS  MATH  Google Scholar 

  • LIGHTHILL, J. (1975) Mathematical Biofluiddynamics, SIAM, Philadelphia.

    Book  MATH  Google Scholar 

  • LIGHTHILL, J. (1993) Biofluiddynamics: A survey, Contemporary Math. 141, 1–32.

    Article  MathSciNet  Google Scholar 

  • MADIGOSKY, W.M., LEE, G.F., HAUN, J., BORKAT F. and KATOKA, R. (1986) Acoustic surface wave measurements of live bottlenose dolphins, J. Acoust. Soc. Amer. 79, 153–159.

    Article  ADS  Google Scholar 

  • NACHTIGALL, W. (1998) Bionik, Grundlagen und Beispiele für Ingenieure und Naturwissenschafter, Springer-Verlag, Berlin.

    Google Scholar 

  • PARRY, D.A. (1949) The structure of whale blubber and a discussion of its thermal properties, Quart. J. Microsc. Sci. 90, 13–25.

    Google Scholar 

  • PEDLEY, T.J. (1977) (Ed.) Scale effects in animal locomotion, Academic Press.

    Google Scholar 

  • PERRY, B., ACOSTA, A.J. and KICENIUK, T. (1961) Simulated wave-riding dolphins, Nature 192, 148–150.

    Article  ADS  Google Scholar 

  • PERSHIN, S.V. (1976) Auto-control of skin damping and hydrodynamic drag reduction during active swimming of cetaceans, (in Russian), Bionika 10, 33–40.

    Google Scholar 

  • PERSHIN, S.V. (1983) Hydrobionic features for optimizing the exterior forms of the propulsion system in cetaceans, (in Russian), Bionika 17, 13–24.

    Google Scholar 

  • PERSHIN, S.V. (1988) Fundamentals of hydrobionics, (in Russian), Sudostroenie, Leningrad.

    Google Scholar 

  • PYATETSKII, V.E., SHAKALO, V.M., TSYGANYUK, A.I. and SIZOV, I.I. (1982) An investigation of the flow regime of water animals, (in Russian), Bionika 16, 31–36.

    Google Scholar 

  • REINER, R. (1998) Selbstorganisation: Anwendungen eines biologischen Prinzips, Biona-report 8, 13–25.

    Google Scholar 

  • RIDGWAY, S.H. and CARDER, D.A. (1993) Features of dolphin skin with potential hydrodynamic importance, IEEE Eng. Med. Biol. 12, 83–88.

    Article  Google Scholar 

  • ROHR, J., LATZ, M.I., FALLON, S., NAUEN, J.C. and HENDRICKS, E.W. (1998) Experimental approaches towards interpreting dolphin-stimulated bioluminescence, J. Exp. Biol. 201, 1447–1460.

    Google Scholar 

  • ROMANENKO, E.V. (1986) Theories of swimming of fishes and dolphins. (in Russian), Nauka, Moscow.

    Google Scholar 

  • SCHLICHTING, H. (1979) Boundary layer theory, 7th. ed., McGraw-Hill, New York.

    MATH  Google Scholar 

  • SCMIDT-NIELSEN, K. (1972) Locomotion: Energy cost of swimming, flying, and running. Science 177, 222–228.

    Article  ADS  Google Scholar 

  • SCHOLANDER, P.F. (1959a) Wave-riding dolphins, How do they do it?, Science 129, 1085–87.

    Article  ADS  Google Scholar 

  • SCHOLANDER, P.F. (1959b) Wave-riding dolphins, Science 130, 1658

    Article  Google Scholar 

  • SHULEYKIN, V.V. (1968) The Physics of the Sea, (in Russian), Nauka, Moscow.

    Google Scholar 

  • SOKOLOV, V.E. (1955) Structure of the epidermis of some cetaceans, (in Russian), Byulleten’ Moskovskogo Obshchestva Ispytatwleiῐ Prirody. Otd. Biologii, 60, 45–60.

    Google Scholar 

  • SOKOLOV, V.E. (1973) The mammalian epidermis, (in Russian), Nauka, Moscow.

    Google Scholar 

  • SOKOLOV, V.E. (1987) Morphology and Ecology of Marine Mammals, (in Russian), Nauka, Moscow.

    Google Scholar 

  • SOKOLOV, V.E., BULINA, I. and RODIONOV, V. (1969) Interaction of dolphin epidermis with flow boundary layer, Nature 222, 267–268.

    Article  ADS  Google Scholar 

  • STROMBERG, M.W. (1989) Dermal-epidermal relationships in the skin of bottlenose dolphins (Tursipos truncatus), Anal, Histol. Embryol. 18, 1–13.

    Article  Google Scholar 

  • SURKINA, R.M (1971a) On the structure and function of dolphin skin muscles, (in Russian), Bionika, 5, 81–87.

    Google Scholar 

  • SURKINA, R.M (1971b) The distribution of the dermal ridges over the body of a bottle-nosed dolphin, (in Russian), Bionika, 5, 88–94.

    Google Scholar 

  • USKOVA, YE.T., SHMYREV, V.S., RAYEVSKIY, L.N., BOGDANOVA, L.N., MOMOT, L.N., BELYAYEV, V.V. and USKov, I.A. (1983) The nature and hydrodynamic activity of dolphin eye secretions, (in Russian), Bionika, 17, 72–75.

    Google Scholar 

  • VAN DAM, C.P. (1987) Efficiency characteristics of crescent-shaped wings and caudal fins, Nature 325, 435–437.

    Article  ADS  Google Scholar 

  • WEBB, P.W. (1975) Hydrodynamics and energetics of fish propulsion, Bull. Fish. Res. Bd. Can. 190, 37–41.

    Google Scholar 

  • WEIS-FOGH, T. and ALEXANDER, R.McN. (1977) The sustained power output from striated muscle, in Scale Effects in Animal Locomotion, T.J. Pedley (ed.), Academic Press, pp. 511–525.

    Google Scholar 

  • WILLIAMS, T.M. (1987) Approaches for the study of exercise physiology and hydrodynamics in marine mammals, in Approaches to Marine Mammal Energetics, A.C. Huntley, A.C. et al., eds., Spec. Pub. Soc. Marine Mammals No. 1, pp. 127–145.

    Google Scholar 

  • WILLIAMS, T.M., DAVIS, R.W., FULMAN, L.A., FRANCIS, J., LE BOEUF, B.J., HORNING, M., CALAMBOKIDIS, J. and CROLL, D.A. (2000) Sink or swim: Strategies for cost-efficient diving by marine mammals, Science 288, 133–136.

    Article  ADS  Google Scholar 

  • WILLIAMS, T.M., FRIEDL, W.A., FONG, M.L., YAMADA, R.M., SEDIVY, P. and HAUN, J.E. (1992) Travel at low energetic cost by swimming and wave-riding bottlenose dolphins, Nature 355, 821–823

    Article  ADS  Google Scholar 

  • WOODCOCK, A.H. (1948) The swimming of dolphins, Nature, 161, 602.

    Article  ADS  Google Scholar 

  • WOODCOCK, A.H. and MCBRIDE, A.F. (1951) Wave-riding dolphins, J. Expt. Biol. 28, 215–217.

    Google Scholar 

  • Wu, T.Y. (1971) Hydromechanics of swimming of fishes and cetaceans, Adv. Appl. Mech. 11, 1–63.

    Article  Google Scholar 

  • WU, T.Y. (2001) On the theoretical modeling of aquatic and aerial animal locomotion, Adv. Appl. Mech. 38, 291–353.

    Article  Google Scholar 

  • YAREMCHUK, A.A. and BABENKO, V.V. (1998) On the question of comparing the bioenergetics of man and dolphin, (in Russian), Bionika, 27–28, 152–154.

    Google Scholar 

  • YUEN, H.S.H. (1961) Bow wave riding of dolphins, Science 134, 1011–12.

    Article  ADS  Google Scholar 

  • ZERBST, E.W. (1987) Bionik, bioligische Funktionsprinzipien und ihre technischen Anwendungen, Teubner-Studienbucher, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Babenko, V.V., Carpenter, P.W. (2003). Dolphin Hydrodynamics. In: Carpenter, P.W., Pedley, T.J. (eds) Flow Past Highly Compliant Boundaries and in Collapsible Tubes. Fluid Mechanics and Its Applications, vol 72. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0415-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0415-1_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6235-2

  • Online ISBN: 978-94-017-0415-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics