Skip to main content

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 14))

Abstract

In the ground state the pair density can be determined by solving of an equation of a two-particle problem. The problem of an arbitrary system with even electrons is reduced to a two-particle problem. The effective potential of this two-particle equation has a term that is the functional derivative of the difference in the kinetic energies of the real system and an auxiliary system with respect to the pair density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Husimi, Proc. Phys. Math. Soc. Jpn. 22, 264 (1940).

    Google Scholar 

  2. P. O. Löwdin, Phys. Rev. 97, 1474 (1955).

    Article  Google Scholar 

  3. A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963);

    Article  Google Scholar 

  4. E. R. Davidson, Reduced Density Matrices in Quantum Chemistry (Academic Press, New York, 1976);

    Google Scholar 

  5. A. J. Coleman and V. I. Yukalov, Reduced Density Matrices: Coulson’s Challange (Sringer-Verlag, New York, 2000);

    Book  Google Scholar 

  6. J. Cioslowski, Many-electron Densities and Reduced Density Matrices (Kluwer/Plenum, New York, 2000).

    Book  Google Scholar 

  7. H. Nakatsuji and K. Yasuda, Phys. Rev. Lett. 76, 1039 (1996);

    Article  CAS  Google Scholar 

  8. K. Yasuda and H. Nakatsuji, Phys. Rev. A 56, 2648 (1997).

    Article  CAS  Google Scholar 

  9. F. Colmenero and C. Valdemoro, Phys. Rev. A 47, 979 (1993);

    Article  CAS  Google Scholar 

  10. C. Valdemoro, L. M. Tel and E. Perez-Romero, Adv. Quantum. Chem. 28, 33 (1997).

    Article  CAS  Google Scholar 

  11. D. Mazziotti, Phys. Rev. A 57, 4219 (1998);

    Article  CAS  Google Scholar 

  12. D. Mazziotti, Chem. Phys. Lett. 289 419 (1998);

    Article  CAS  Google Scholar 

  13. D. Mazziotti, Int. J. Quantum. Chem. 70, 557 (1998);

    Article  CAS  Google Scholar 

  14. D. Mazziotti, Phys. Rev. A 60, 3618 (1999);

    Article  CAS  Google Scholar 

  15. D. Mazziotti, Phys. Rev. A 60, 4396 (1999).

    Article  CAS  Google Scholar 

  16. A. Gonis, T. C. Schulthess, J. van Ek and P. E. A. Turchi, Phys. Rev. Lett. 77, 2981 (1996);

    Article  CAS  Google Scholar 

  17. A. Gonis, T. C. Schulthess, P. E. A. Turchi and J. van Ek, Phys. Rev. B 56, 9335 (1997).

    Article  CAS  Google Scholar 

  18. Á. Nagy, Phys. Rev. A 66, 022505 (2002).

    Article  Google Scholar 

  19. N. Hadjisavvas and A. Theophilou, Phys. Rev. A 30, 2183 (1984);

    Article  CAS  Google Scholar 

  20. A. Theophilou, Int. J. Quantum Chem. 69, 461 (1998).

    Article  CAS  Google Scholar 

  21. P. Ziesche, Phys. Lett. A 195, 213 (1994);

    Article  CAS  Google Scholar 

  22. P. Ziesche, Int. J. Quantum. Chem. 60, 149 (1996);

    Article  CAS  Google Scholar 

  23. M. Levy and P. Ziesche, J. Chem. Phys. 115, 9110 (2001).

    Article  CAS  Google Scholar 

  24. E. Lieb, Int. J. Quantum. Chem. 24, 243 (1983).

    Article  CAS  Google Scholar 

  25. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  Google Scholar 

  26. W. Kohn and L.J. Sham, Phys. Rev.140 A,1133(1965).

    Article  Google Scholar 

  27. J. M. Parks and R. G. Parr, J. Chem. Phys. 28, 335 (1958);

    Article  CAS  Google Scholar 

  28. R. McWeeny, Proc. Roy. Soc. London A 253, 242 (1959);

    Article  CAS  Google Scholar 

  29. T. A. Allen and H. Shull, J. Chem. Phys. 35, 1644 (1961).

    Article  CAS  Google Scholar 

  30. E. R. Davidson, Chem. Phys. Lett. 246, 209 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Nagy, Á. (2003). Pair Density Functional Theory. In: Gidopoulos, N.I., Wilson, S. (eds) The Fundamentals of Electron Density, Density Matrix and Density Functional Theory in Atoms, Molecules and the Solid State. Progress in Theoretical Chemistry and Physics, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0409-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0409-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6508-7

  • Online ISBN: 978-94-017-0409-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics