Skip to main content

Structure and Mechanical Properties of Ceramic Nanocomposite Coatings

  • Chapter
Trends in Nanoscale Mechanics

Part of the book series: ICASE/LaRC Interdisciplinary Series in Science and Engineering ((ICAS,volume 9))

Abstract

Current research on ceramic nanocomposite coatings is reviewed, with emphasis placed on recent developments in two-phase ceramic nanocomposites. Results on the structure, mechanical properties, and tribological characteristics of Ti-C:H and Ti-Si-N coatings are highlighted. Potential applications of ceramic nanocomposite coatings to surface engineering of macro- and micro- scale mechanical systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Harris, M. Despa, K. W. Kelly, Design and fabrication of a cross flow micro heat exchanger, IEEE J. Microelectromech. Syst. 9, 502 (2000).

    Article  Google Scholar 

  2. L. S. Stephens, K. W. Kelly, D. Kountouris, J. McLean, A pin fin micro heat sink for cooling macroscale conformal surfaces under the influence of thrust and frictional forces, IEEE J. Microelectromech. Syst. 10, 222 (2001).

    Article  Google Scholar 

  3. Y. Tanaka, N. Ichimiya, Y. Onishi, Y. Yamada, Structure and properties of Al-Ti-Si-N coatings prepared by the cathodic arc ion plating method for high speed cutting applications, Surf. Coat. Technol. 146 /147, 215 (2001).

    Article  Google Scholar 

  4. X. Li, B. Bhushan, Micro/nanomechanical and tribological studies of bulk and thin-film materials used in magnetic recording heads, Thin Solid Films 398 /399, 313 (2001).

    Article  Google Scholar 

  5. D. M. Cao, T. Wang, B. Feng, W. J. Meng, K. W. Kelly, Amorphous hydrocarbon based thin films for high-aspect-ratio MEMS applications, Thin Solid Films 398 /399, 553 (2001).

    Article  Google Scholar 

  6. I. A. Polonsky, T. P. Chang, L. M. Keer, and W. D. Sproul, A study of rolling-contact fatigue of bearing steel coated with physical vapor deposition TiN films: coating response to cyclic contact stress and physical mechanisms underlying coating effect on the fatigue life, Wear 215, 191 (1998).

    Article  Google Scholar 

  7. J. E. Sundgren, H. T. G. Hentzell, A review of the present state of art in hard coatings grown from the vapor phase, J. Vac. Sci. Technol. A4, 2259 (1986).

    Article  Google Scholar 

  8. G. L. Doll and B. K. Osborn, Engineering Surfaces of Precision Steel Components, Society of Vacuum Coaters, 44th Annual Technical Conference Proceedings, Philadelphia, PA, April 21-26, 2001, pp. 78 - 84.

    Google Scholar 

  9. W. J. Meng, J. Heremans, Growth of epitaxial aluminum nitride and aluminum nitride/zirconium nitride superlattices on Si(111), J. Vac. Sci. Technol. A10, 1610 (1992).

    Article  Google Scholar 

  10. S. A. Barnett, Deposition and mechanical properties of superlattice thin films, in Physics of Thin Films 17, edited by M. H. Francombe and J. L. Vossen, Academic Press, Boston (1993).

    Google Scholar 

  11. W. J. Meng, B. A. Gillispie, Mechanical properties of Ti-containing and W-containing diamond-like carbon coatings, J. Appl. Phys. 84, 4314 (1998).

    Article  Google Scholar 

  12. J. R. Weertman, R. S. Averback, Mechanical properties, in Nanomaterials: Synthesis, Properties, and Applications, edited by A. S. Edelstein and R. C. Cammarata, Institute of Physics Publishing, Bristol (1996).

    Google Scholar 

  13. W. Kern, V. S. Ban, Chemical vapor deposition of inorganic thin films, in Thin Film Processes, edited by J. L. Vossen and W. Kern, Academic Press, Orlando (1978).

    Google Scholar 

  14. W. J. Meng and G. L. Doll, Ion energy effects in A1N thin films grown on Si(111), J. Appl. Phys. 79, 1788 (1996).

    Article  Google Scholar 

  15. I. Petrov, L. Hultman, J. E. Sundgren, and J. E. Greene, Polycrystalline TiN films deposited by reactive bias magnetron sputtering: effects of ion bombardment on resputtering rates, film composition, and microstructure, J. Vac. Sci. Technol. A10, 265 (1992).

    Article  Google Scholar 

  16. M. A. Lieberman, A. J. Lichtenberg, Principles of plasma discharges and materials processing, Wiley, New York (1994).

    Google Scholar 

  17. G. M. Rao, S. B. Krupanidhi, Electron cyclotron resonance plasma assisted sputter deposition of boron nitride films, Appl. Phys. Lett. 70, 628 (1997).

    Google Scholar 

  18. 1. H. Kim, K. S. Kim, S. H. Kim, S. R. Lee, Synthesis of cubic boron nitride films using a helicon wave plasma and reduction of compressive stress, Thin Solid Films 290 /291, 120 (1996).

    Google Scholar 

  19. W. J. Meng, T. J. Curtis, Inductively coupled plasma assisted physical vapor deposition of titanium nitride coatings, J. Electronic Materials 26, 1297 (1997).

    Article  Google Scholar 

  20. B. Window, N. Savvides, Charged particle fluxes from planar magnetron sputtering sources, J. Vac. Sci. Technol. A4, 196 (1986).

    Article  Google Scholar 

  21. W. J. Meng, T. J. Curtis, L. E. Rehn, P. M. Baldo, Temperature dependence of inductively coupled plasma assisted growth of TiN thin films, Surf. Coat. Technol. 120 /121, 206 (1999).

    Article  Google Scholar 

  22. E. Y. Wang, N. Hershkowitz, T. Intrator, C. Forest, Techniques for using emitting probes for potential measurement in if plasmas, Rev. Sci. Instrum. 57, 2425 (1986).

    Article  Google Scholar 

  23. W. J. Meng, E. I. Meletis, L. E. Rehn, P. M. Baldo, Inductively coupled plasma assisted deposition and mechanical properties of metal-free and Ti-containing hydrocarbon coatings, J. Appl. Phys. 87, 2840 (2000).

    Article  Google Scholar 

  24. W. J. Meng, R. C. Tittsworth, J. C. Jiang, B. Feng, D. M. Cao, K. Winkler, V. Palshin, Ti atomic bonding environment in Ti-containing hydrocarbon coatings, J. Appl. Phys., 88, 2415 (2000).

    Article  Google Scholar 

  25. W. J. Meng, R. C. Tittsworth, L. E. Rehn, Mechanical properties and microstructure of TiC/amorphous hydrocarbon nanocomposite coatings, Thin Solid Films 377 /378, 222 (2000).

    Article  Google Scholar 

  26. R. W. Siegel, Nanostructures of metals and ceramics, in Nanomaterials: Synthesis, Properties, and Applications, edited by A. S. Edelstein and R. C. Cammarata, Institute of Physics Publishing, Bristol (1996).

    Google Scholar 

  27. R. Zallen, The physics of amorphous solids, Wiley, New York (1983).

    Book  Google Scholar 

  28. D. M. Cao, B. Feng, W. J. Meng, L. E. Rehn, P. M. Baldo, M. M. Khonsari, Friction and wear characteristics of ceramic nanocomposite coatings: titanium carbide/amorphous hydrocarbon, Appl. Phys. Lett. 79, 329 (2001).

    Google Scholar 

  29. B. Shi, W. J. Meng, L. E. Rehn, P. M. Baldo, Intrinsic Stress Development in Ti-C:H Ceramic Nanocomposite Coatings, Appl. Phys. Lett. 81, 352 (2002).

    Google Scholar 

  30. W. J. Meng, X. D. Zhang, B. Shi, R. C. Tittsworth, L. E. Rehn, P. M. Baldo, Microstructure and Mechanical Properties of Ti-Si-N Coatings, J. Mater. Res. 17, 2628 (2002).

    Article  Google Scholar 

  31. J. W. Martin, R. D. Doherty, B. Cantor, Stability of Microstructure in Metallic Systems, Cambridge University Press (1997).

    Google Scholar 

  32. W. C. Oliver, G. M. Pharr, An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 1564 (1992).

    Article  Google Scholar 

  33. M. Oden, M. Ljungcrantz, L. Hultman, Characterization of the induced plastic zone in a single crystal TiN(001) film by nanoindentation and transmission electron microscopy, J. Mater. Res. 12, 2134, (1997).

    Article  Google Scholar 

  34. D. K. Leung, M. Y. He, A. G. Evans, The cracking resistance of nanoscale layers and films, J. Mater. Res. 10, 1693 (1995).

    Article  Google Scholar 

  35. J. S. Wang, Y. Sugimura, A. G. Evans, W. K. Tredway, The mechanical performance of DLC films on steel substrates, Thin Solid Films 325, 163 (1998).

    Article  Google Scholar 

  36. T. Itoh (ed.), Ion beam assisted film growth, Elsevier, Amsterdam (1989).

    Google Scholar 

  37. M. Hans, R. Buchel, M. Grischke, R. Hobi, M. Zach, High-volume PVD coating of precision components of large volumes at low process costs, Surf. Coat. Technol. 123, 288 (2000).

    Article  Google Scholar 

  38. J. C. Jiang, W. J. Meng, A. G. Evans, C. V. Cooper, Structure and mechanics of W-DLC coated spur gears, submitted to Surf. Coat. Technol. (2002).

    Google Scholar 

  39. B. Feng, D. M. Cao, W. J. Meng, J. Xu, R. C. Tittsworth, L. E. Rehn, P. M. Baldo, G. L. Doll, Characterization of microstructure and mechanical behavior of sputter deposited Ti-containing amorphous carbon coatings, Surf. Coat. Technol. 148, 153 (2001).

    Article  Google Scholar 

  40. M. Madou, Fundamentals of Microfabrication, CRC Press, Boca Raton (1997).

    Google Scholar 

  41. E. W. Becker, W. Ehrfeld, D. Munchmeyer, H. Betz, A. Heuberger, S. Pongratz, W. Glashauser, H. J. Michel, V. R. Siemens, Naturwissenschaften 69, 520 (1982).

    Article  Google Scholar 

  42. L. Weber, W. Ehrfeld, H. Freimuth, M. Lacher, H. Lehr, B. Pech, SPIE Proceeding, Micromachining and microfabrication Process Technology II, Austin, Texas, U.S.A., 1996, p. 156.

    Book  Google Scholar 

  43. D. M. Cao, D. Guidry, W. J. Meng, K. W. Kelly, Molding of Pb and Zn with microscale mold inserts, submitted to Microsystem Technologies (2002).

    Google Scholar 

  44. A. R. Miedema, The heat of formation of alloys, Philips Tech. Rev. Vol. 36 (8), 217 (1976).

    Google Scholar 

  45. T. B. Massalski (ed.), Binary Alloy Phase Diagrams, American Society of Metals, Metals Park, Ohio (1986), Vol. 2, p. 1738, p. 1772.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Meng, W.J., Voyiadjis, G.Z. (2003). Structure and Mechanical Properties of Ceramic Nanocomposite Coatings. In: Harik, V.M., Salas, M.D. (eds) Trends in Nanoscale Mechanics. ICASE/LaRC Interdisciplinary Series in Science and Engineering, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0385-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0385-7_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6479-0

  • Online ISBN: 978-94-017-0385-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics