Skip to main content

Grain Rotation as a Mechanism of Grain Growth in Nanocrystalline Materials

  • Chapter
Trends in Nanoscale Mechanics

Part of the book series: ICASE/LaRC Interdisciplinary Series in Science and Engineering ((ICAS,volume 9))

Abstract

Grain-boundary (GB) properties in a polycrystalline system are generally anisotropic; in particular, both the GB energy and mobility depend on the GB misorientation. Moreover, in nanocrystalline materials, in which the grain size is less than 100 nm, grain rotations leading to the coalescence of neighboring grains via elimination of the common GB between them may provide a new mechanism for grain growth. Here we investigate the combined effect of curvature-driven GB migration and grain-rotation grain-coalescence on the kinetics, topology and morphology of grain growth. A stochastic velocity-Monte-Carlo algorithm based on a variational formulation for the dissipated power is implemented. The presence of both growth mechanisms introduces a physical length scale RC into the system, enabling the growth process to be characterized by two regimes. If the average grain size is smaller than RC, grain growth is dominated by the grain-rotation-coalescence mechanism. By contrast, if the average grain size is greater than RC, growth is dominated by curvature-driven GB migration. The values of the growth exponents, different for the two growth regimes and different from a system with isotropic GB properties, are rationalized in terms of the detailed growth mechanism and the continuous change of the fraction of low-angle GBs in the system. An extended von Neumann-Mullins relation based on averaged GB properties is proposed and verified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Humphreys, F.J., and Hatherly, M., Recrystallization and Related Annealing Phenomena, Pergamon, Elsevier Science Ltd., Oxford, 1995.

    Google Scholar 

  2. Burke, J. E. and Turnbull, D., Prog. Metal Phys., 1952, 3, 220.

    Article  Google Scholar 

  3. Hillert, M., Acta metall., 1965, 13, 227.

    Article  Google Scholar 

  4. Louat, N.P., Acta metall., 1974, 22, 721.

    Article  Google Scholar 

  5. Mullins, W.W., J. Appl. Phys., 1986, 59, 1341.

    Article  Google Scholar 

  6. Abbruzzese, G. and Lucke, K., Acta metall., 1986, 34, 905.

    Article  Google Scholar 

  7. Grest, G.S., Srolovitz, D.J. and Anderson, P.M., Acta metall., 1985, 33, 509.

    Article  Google Scholar 

  8. Rollett, A.D., Srolovitz, D.J., and Anderson, P.M., Acta metall., 1989, 37, 1227.

    Article  Google Scholar 

  9. Frost, H.J., Thompson, C.V., Howe, C.L., and Whang, J., Scripta metall., 1988, 22, 65.

    Article  Google Scholar 

  10. Maurice C. and Humphreys F. J., Grain Growth in Polycrystalline Materials, Proc. 3rd Int. Conf. 1998, eds. Weiland, H., Adams, B.L. and Rollett, A.D., TMS Publ., Warrendale PA, 1998, p. 81.

    Google Scholar 

  11. Kawasaki, K., Nagai, T. and Nakashima, K., Phil. Mag. B, 1989, B60, 399.

    Article  Google Scholar 

  12. Weygand, D., Brechet, Y. and Lepinoux, J., Phil. Mag. B, 1998, B78, 329.

    Article  Google Scholar 

  13. Frost, H.J., Thompson, C.V., Howe, C.L., and Whang, J., Scripta metall., 1988, 22, 65.

    Article  Google Scholar 

  14. Cocks, A.C.F., and Gill, S.P.A., Acta mater., 1996, 44, 4765.

    Article  Google Scholar 

  15. Gill, S.P.A., and Cocks, A.C.F., Acta mater., 1996, 44, 4777.

    Article  Google Scholar 

  16. Moldovan, D., Wolf, D., Phillpot, S.R., and Haslam, A.J., Phil. Mag. A, 2002, 82, 1271.

    Article  Google Scholar 

  17. Gottstein, G., and Shvindlerman, L.S., Scripta metall mater., 1992, 27, 1521.

    Article  Google Scholar 

  18. von Neumann, J., in Metal Interfaces, ASM, Metals Park, Cleveland, Ohio, 1952, p. 108.

    Google Scholar 

  19. Mullins, W. W., J. Appl. Phys., 1956, 27, 900.

    Article  MathSciNet  Google Scholar 

  20. Herrmann, G., Gleiter, H. and Baro, G., Acta metall., 1976, 24, 353.

    Article  Google Scholar 

  21. Lojkowski, W., Gleiter, H. and Maurer, R., Acta metall., 1988, 36, 69.

    Article  Google Scholar 

  22. Mykura, H., Acta metall., 1979, 27, 243.

    Article  Google Scholar 

  23. Ringer, S. P., Li, W. B. and Easterling, K. E., Acta metall. mater., 1992, 40, 275.

    Article  Google Scholar 

  24. Harris, K.E., Singh, V.V. and King, A.H., Acta mater., 1998, 46, 2623.

    Article  Google Scholar 

  25. Nichols, C.S., Mansuri, C.M., Townsend, S.J. and Smith, D.A., Acta metall. mater., 1993, 41, 1861.

    Article  Google Scholar 

  26. Randle, V., Phil. Mag. A, 1993, 67, 1301.

    Article  Google Scholar 

  27. Randle, V., Mat. Sci. & Tech., 1991, 7, 985.

    Article  Google Scholar 

  28. Yamasaki, T., Demizu Y. and Ogino, Y., Mater. Sci. Forum, 1996, 204–206, 461.

    Article  Google Scholar 

  29. Haslam, A.J., Phillpot, S.R., Wolf, D., Moldovan, D. and Gleiter, H., Mat. Sci. and Eng. A, 2001, 318, 293.

    Article  Google Scholar 

  30. Nichols, C.S., Cook, R.F., Clarke, D.R. and Smith, D.A., Acta metall. mater., 1991, 39, 1657.

    Article  Google Scholar 

  31. Nichols, C.S., Cook, R.F., Clarke, D.R. and Smith, D.A., Acta metall. mater., 1991, 39, 1667.

    Article  Google Scholar 

  32. Saetre, T.O., Ryum, N. and Evangelista, E., Metall. Trans. A, 1991, 22A, 2257.

    Article  Google Scholar 

  33. Saetre, T.O. and Ryum, N., Metall. Trans. A, 1995, 26A, 1687.

    Article  Google Scholar 

  34. Li, J.C.M., J. Appl. Phys., 1962, 33, 2958.

    Article  Google Scholar 

  35. Doherty, R.D. and Szpunar, J. A., Acta metall., 1984, 32, 1789.

    Article  Google Scholar 

  36. Ryum, N., Acta Metall., 1969, 17, 831.

    Article  Google Scholar 

  37. Shewmon, P.G., Chap. 5 in Recrystallization, Grain Growth and Textures, ASM, Metals Park, OH, 1966, p. 165.

    Google Scholar 

  38. Moldovan, D., Wolf, D. and Phillpot, S.R., Acta mater., 2001, 49, 3521

    Article  Google Scholar 

  39. Raj, R. and Ashby, M.F., Metall. Trans., 1971, 2, 1113.

    Article  Google Scholar 

  40. Needleman, A. and Rice, J. R., Acta metall., 1980, 28, 1315.

    Article  Google Scholar 

  41. Cleri, F., Physica A, 2000, 282, 339.

    Article  Google Scholar 

  42. Read, W. T., and Shockley, W., Phys. Rev., 1950, 78, 275.

    Article  MATH  Google Scholar 

  43. Wolf, D., Scripta metall., 1989, 23, 1713.

    Article  Google Scholar 

  44. Humphreys, F. J., Grain Growth in Polycrystalline Materials, Proc. 3rd Int. Conf. 1998, eds.

    Google Scholar 

  45. Weiland, H., Adams, B.L. and Rollett, A.D., TMS Publ., Warrendale PA, 1998, p. 13. Herring, C., Chapter 8 in The Physics of Powder Metallurgy, W. E. Kingston, ed., McGraw-Hill, New York, 1951, p. 143.

    Google Scholar 

  46. Weaire, D. and Kermode, J.P., Phil. Mag., 1983, B48, 245

    Article  Google Scholar 

  47. Weaire, D. and Kermode, J.P., Phil. Mag., 1984, B50, 379.

    Article  Google Scholar 

  48. Mackenzie, J. K. and Thomson, M. J., Biometrika, 1957, 44, 205.

    Article  MATH  MathSciNet  Google Scholar 

  49. Samajdar, I. and Doherty, R. D., Scripta metall. et mater., 1994, 31, 527.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Moldovan, D., Wolf, D., Phillpot, S.R., Haslam, A.J. (2003). Grain Rotation as a Mechanism of Grain Growth in Nanocrystalline Materials. In: Harik, V.M., Salas, M.D. (eds) Trends in Nanoscale Mechanics. ICASE/LaRC Interdisciplinary Series in Science and Engineering, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0385-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0385-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6479-0

  • Online ISBN: 978-94-017-0385-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics