Skip to main content

Biological Effects of Electromagnetic Fields on Living Cells

  • Chapter
Integrative Biophysics

Abstract

The significance of studies of the biological effects of electromagnetic fields (EMFs) on living cells is explained using a number of different examples. These clearly show how exposure of living cells to EMFs cause physical stresses and biological effects. Recent studies concerning effects of EMFs on cell signaling and gene expression are reviewed, but it is stressed that the question of the actual mechanisms of the interaction between these EMFs and living systems remains largely unknown, necessitating further investigation. The role of biophoton emission in studying the endogenous EM (electromagnetic) fields of living systems and the role such fields play in understanding life are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blank, M. (1995) Biological effects of environmental electromagnetic fields: Molecular mechanisms. Biosystems, 35, 2–3.

    Article  Google Scholar 

  2. Brayman, A.A., Miller, M.W., and Cox, C. (1987) Effects of 60-Hz electric fields on cellular elongation and radial expansion growth in cucumber roots. Bioelectromagnetism 8, 57–72.

    Article  Google Scholar 

  3. Simpson, J., Brady, D., RolIan, A., Barron, N., Mchale L., Mchale, A.P. (1995) Increased ethanol production during growth of electric-field stimulated. Kluyveromyces marxianus IMB 3 during growth on lactose-containing media at 45 degrees C. Biotechnology Letters 17, 757–760.

    Article  Google Scholar 

  4. Zeira, M., Tosi, P.F., Mouneimne, Y., Lazaite, J., Sneel, L.,Volsky, D. and Nicolau, C. (1991) Full length CD4 electroinserted in the erythrocyte membrane as a long-lived inhibitor of infection by human immunodeficiency virus. Proc. Nat. Sci. Am., 88, 4409–4413.

    Google Scholar 

  5. Jiao, H. L., Wang, Y., Chang, J.J. (2001) Apoptosis of cancer cells by long term exposure of Ehrlish Ascites mice to weak electromagnetic fields. Electro and Magneto Biology, 20 (3), 299–311.

    Article  Google Scholar 

  6. Blank, M. (1995) Electromagneti field: Biological interactions and mechanism. Washington, DC: American Chemical Society Press, 1–11.

    Google Scholar 

  7. Repacholi, M. H. (1998) Low-level exposure to radiofrequency electromagnetic fields: Health effects and research needs. Bioelectromagnetics, 19, 1–19.

    Article  Google Scholar 

  8. Repacholi, M.H. and Greenebaum, B. (1999) Interaction of static and extremely low frequency electric and magnetic fields with living systems: health effects and research needs. Bioelectromagnetics, 20, 133–160.

    Article  Google Scholar 

  9. Pomerai, D., Daniells, C., David, H. et al. (2000) Non-thermal heat-shock response to microwaves. Nature, 405, 417–418.

    Article  ADS  Google Scholar 

  10. Zimmermann, U. (1982) Electric field-mediated fusion and related electrical phenomena. Biochim. Biophys. Acta, 694, 227–277.

    Article  Google Scholar 

  11. Chang, J.J., Liu, Y., and Kong, K.J. (1994) Dynanic cell-membrane events following the application of single-pulse electric fields. In Bioelectrodynamacs and Biocommunication, Ho, M.W., Popp, F.A, Warnke, U. (eds.), Singapore-London: World Scientific Publishing, 251–268.

    Google Scholar 

  12. Christopher, L. D., and Douglas, B. K. (1995) The low frequency dielectric properties of biological cells in Bioelectrochemistry of cells and tissues. Waltz, D. Berg, H. and Milazzo, G. (eds.), Basel, Switzerland, Birkhäuser Verlag, 159–207.

    Google Scholar 

  13. Tsong, T.Y. (1990) Electrical modulation of membrane proteins. Annu. Rev. Biophys. Chem., 19, 83–106.

    Article  Google Scholar 

  14. Chang, J.J., Sun, T., Chen, Y., Zhou, S., Chen, Y., and Pang, S. (1997) Studies on Changes of Intracellular Na+ Concentration in Erythrocytes Effected by Pulsed Electrical Field. Science in China (Series C), 40 (5), 488–495.

    Article  Google Scholar 

  15. Ho,M.W., Xu, X., Roos, S., and Saunders, P.T. (1994) Light emission and rescattering in synchronously developing populations of early Drosophila embryos. In Recent Advances in Biophoton Research and its Applications Popp, F.A., Li, K.H., and Gu, Q. (eds.). Singapore-London, World Scientific Publishing, 1992, 287–36.

    Google Scholar 

  16. Chen, Y., Wang, Y., Sun, T., Chang, J.J et al. (2000) Dynamic changes of [Ca2+]i in cultured cerebellar granule cells exposed to pulsed electric field. Science in China (C), 43, 77–81.

    Google Scholar 

  17. Cho, M.R., Thatte, H.S., Silvia, M.T., Golan, D.E. (1999) Transmembrane calcium influx induced by AC electric fields. FASEB J., 13 (6), 677–83.

    Google Scholar 

  18. Galvanovskis, J., Sandblom, J. (1997) Amplification of electromagnetic signals by ion channels. Biophys J., 73 (6), 3056–65.

    Article  Google Scholar 

  19. Dibirdik, I., Kristupaitis, D., Kurosaki, T., et al. (1998) Stimulation of Src family protein-tyrosine kinases as a proximal and mandantory step for SYK kinase-dependent phospholipase Cy2 activation in lymphoma B cells exposed to low energy electromagnetic fields. J. Biol. Chem., 273 (7), 4035–4039.

    Article  Google Scholar 

  20. Kristupaitis, D., Dibirdik, I., Vassilev, A., et al. (1998) Electromagnetic field-induced stimulation of Bruton tyrosine kinase. J. Biol. Chem., 273 (20), 12397–12401.

    Article  Google Scholar 

  21. Miller, S. C., Fumiss, M.J. (1998) Bruton’s tyrosine kinase activity and inositol 1,4,5trisphosphate production are not altered in DT40 lymphoma B cells exposed to power line frequency magnetic fields. J. Biol. Chem, 273 (49), 32618–32626.

    Article  Google Scholar 

  22. Mullins, R.D., Sisken, J.E. (2000) Mechanisms underlying spontaneous calcium spiking in aequorin-loaded ROS 17/2.8 cells. Bioelectromagnetics, 21 (5), 329–37.

    Article  Google Scholar 

  23. Berg, H. (1995) Low-frequency electromagnetic field effects on cell metabolism, in Bioelectrochemistry of cells and tissues, Walz, D., Berger H. (eds.), Birkhäuser Verlag, Basel, Boston, Berlin, 285–301.

    Google Scholar 

  24. Tsong, T.Y. (1994) Electroconformational coupling: Enforced conformational oscillation of a membrane enzyme for energy transduction. In Biomembrane electrochemistry, Blank, M. and Vodynoy (eds.), I. Washington, DC: American Chemical Society, 561–578.

    Chapter  Google Scholar 

  25. Eichwald, C., Kaiser, F. (1995) Model for external influences on cellular signal transduction pathway including cytosolic calcium oscillations. Bioelectromagnetics, 16, 75–85.

    Article  Google Scholar 

  26. Goodman, R., Wei, L.X., Xu, J.C., Henderson, A. (1989) Exposure of human cells to low-frequency electromagnetic fields results in quantitative changes in transcripts. Biochim Biophys Acta, 1009 (3), 216–20.

    Article  Google Scholar 

  27. Phillips, J.L. (1993) Effects of electromagnetic field exposure on gene transcription. J Cell Biochem, 51 (4), 381–6.

    Google Scholar 

  28. Lin, H. Goodman, R., Shirley-Henderson, A. (1994) Specific region of the c-myc promoter is responsive to electric and magnetic fields. J. Cell Biochem,54(3) 281–8.

    Google Scholar 

  29. Lin, H., Head, M., Blank, M., Han, L., Jin, M., Goodman, R. (1998) Myc-mediated transactivation of HSP70 expression following exposure to magnetic fields. J. Cell Biochem., 69 (2), 181–8.

    Article  Google Scholar 

  30. Morehouse, C.A., Owen, R.D. (2000) Exposure to low-frequency electromagnetic fields does not alter HSP70 expression or HSF-HSE binding in HL60 cells. Radiat Res., 153 (5 Pt 2), 658–62.

    Article  Google Scholar 

  31. Blank, M. and Goodman, R. (1997) Do electromagnetic fields interact directly with DNA? Bioelectromagnetics, 18, 111–115.

    Article  Google Scholar 

  32. Valberg, P.A., Kavet, R. and Rafferty, C.N. (1997) Can low-level 50/60 Hz electric and magnetic fields cause biological effects? Radiat. Res, 148, 2–21.

    Article  Google Scholar 

  33. Adair, R.K. (1994) Effects of weak high-frequency electromagnetic fields on biological systems. In Radio frequency radiation standards: Biological effects. Klauenberg, B.J., Grandolfo, M., Erwin, D.N. (eds.), New York: Plenum Press, 207–221(2–96 R811–532 R12).

    Google Scholar 

  34. Bezrukov, S.M. and Vodyanoy, I. (1997) Stochastic resonance in non-dynamic systems without response thresholds. Nature, 385, 291.

    Article  Google Scholar 

  35. Popp, F.A., Chang, J.J. (2000) Mechanism of interactions between electromagnetic fields and living organisms, Science in China (Series C) 43 (5), 507–518.

    Google Scholar 

  36. Fröhlich, H. (1968) Long Range Coherence and Energy Storage in Biological Systems. Int.J.Quant.Chem, 2, 641–649.

    Article  ADS  Google Scholar 

  37. Popp, F.A. (1992) Some essential questions of biophoton research and probable answers. In Recent Advances in Biophoton Research and Its applications, Popp, F.A., Li, K.H., Gu, Q. (eds.), Singapore-London: World Scientific Publishing Co. Pte. Ltd., 1–46.

    Google Scholar 

  38. Popp, F.A. and Li, K.H. (1993) Hyperbolic Relaxation as a Sufficient Condition of a Fully Coherent Ergodic Field. International Journal of, Theoretical Physics, 32, 1573–1583.

    Article  Google Scholar 

  39. Wildon, D.C., Thain, F., Minchia, E.H. (1992) Electrical signaling and systemic proteinase inhibitor induction in the wounded plant. Nature, 360, 60–62.

    Article  ADS  Google Scholar 

  40. Albrecht-Buehler, G. (1992) Rudimentary from of cellular “vision.” Pro. Natl. Acad. Sci. (USA), 89, 8288–8288.

    Article  ADS  Google Scholar 

  41. Shen, X., Mei, P., Xu, X. (1994) Activation of neutrophils by a chemically separated but optically coupled neutrophil population undergoing respiration burst. Experientia, 50, 963–968.

    Article  Google Scholar 

  42. Chang, J.J., Popp, F.A. and Yu, W.D. (1995) Research on cell communication of P. elegans by means of photon emission. Chinese science bulletin, 40, 76–79.

    Google Scholar 

  43. Popp, F.A., Shen, X. (1998) The photon count statistic study on the photon emission from biological systems using a new coincidence counting system. In Biophotons, Chang, J.J., Fish, J. and Popp, F.A. (eds.), Dordrecht-Boston-London, Kluwer Academic Publishers, 87–92.

    Google Scholar 

  44. Schamhart, D.H.J. and van Wijk, R. (1987) Photon Emission and the degree of differentiation. In Photon Emission from Biological Systems, Jezowska-Trzebioatowska, B., Kochel, B., Slawinski, J., and Strek, W. (eds.), Singapore, World Scientific, 137–152.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chang, JJ. (2003). Biological Effects of Electromagnetic Fields on Living Cells. In: Popp, FA., Beloussov, L. (eds) Integrative Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0373-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0373-4_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6228-4

  • Online ISBN: 978-94-017-0373-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics