Skip to main content

Developmental Biology and Physics of Today

  • Chapter
Integrative Biophysics
  • 501 Accesses

Abstract

We start by analyzing two alternative approaches which can be used for explaining natural events: a physicalistic one, directed towards formulation of the overall laws which should be as non-specific as possible, and an “instructivistic” one, which aim is to create a list of as specific as possible “instructions”. We discuss whose one of them is mostly relevant for describing the development of organisms. We point to some deep discrepancies between classical physics (“physics of yesterday”) and the fundamental holistic properties of the developing organisms. It was this controversial situation which inclined researchers to use instructivistic approaches. Meanwhile, the “physics of today” (and, first of all, a theory of a self-organization) is much more adequate for interpreting holistic properties of biological development. We give several examples illustrating how modern physical ideas and approaches may be used for clarifying some fundamental problems of development. We consider, in particular, the field of an “embrymechanics”, which is studying the feedback relations between passive and active mechanical stresses. In the last section we represent briefly some results of a new field of a “developmental biophotonics”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kant, I. (1755) (1910) Allgemeine Naturgeschichte und Theorie des Himmels. Königsberg — Leipzig (Gesammelte Schriften Bd. 1 Berlin).

    Google Scholar 

  2. Maxwell, J.C. (1871) (1991) Matter and Motion. Dover, London.

    Google Scholar 

  3. Curie, P. (1894) De symmetrie dans les phenomenes physique: symmetrie des champs electrique et magnetiques. J. De Physique, 3, 393–427.

    MATH  Google Scholar 

  4. Jaffe, L.F. (1968) Localization in the developing Fucus eggs and the general role of localizing currents. Advances in Morphogenesis, 7, 295–328.

    MathSciNet  Google Scholar 

  5. Nieuwkoop, P.D. (1977) Origin and establishment of an embryonic polar axis in amphibian development. Curr. Top. Devel Biol., 11, 115–117.

    Article  Google Scholar 

  6. Dürr, H.-P. (2000) Unbelebte und Belebte Materie: Ordnungsstructuren immaterialler Beziehungen. Physicalische Wurzeln des Lebens. In Elemente des Lebens, Düu, H.P., Popp, F.A. and Schommers, W. (eds.), Die Graue Edition, 179–208

    Google Scholar 

  7. Gurwitsch, A.G. (1991) Principles of Analytical Biology and a Theory of a Cellular Field. Nauka, Moskva (in Russian).

    Google Scholar 

  8. Gilbert, S.F. (1988) Developmental Biology. Sinauer Ass., Inc. Sunderland, Mass.

    Google Scholar 

  9. Dosch, R., Gawantka, V., Delius, H., Blumenstock, C., Niehrs, Chr. (1997) BMP-4 acts as a morphogen in dorsoventral mesoderm patterning in Xenopus. Development, 124, 2325–2334.

    Google Scholar 

  10. Dale, L., Slack J.M.W. (1987) Fate map for the 32-cell stage of Xenopus laevis. Development, 99, 527–551.

    Google Scholar 

  11. Nicolis, G., and Prigogine, L. (1977) Self-organization in Non-equilibrium Systems. Wiley, N.Y.

    Google Scholar 

  12. Prigogine, I. (1980) From Being to Becoming: Time and Complexity in the Physical Sciences. W.H. Freeman and Co., N.Y.

    Google Scholar 

  13. Loskutov, A. Ju., Michailov, A.S. (1990) Introduction to Synergetics. Nauka, Moskva (in Russian).

    Google Scholar 

  14. Goodwin, B.C. (1994) How the Leopard Changed Its Spots. The Evolution of Complexity. Weidenfeld and Nicolson, London.

    Google Scholar 

  15. Krinsky, V.I., Zhabotinsky, A.M. (1981) Autowave structures and perspectives of their investigations. In Autowave Processes in Dfusional Systems, Grechova, M.T. (ed.), Gorky, Inst. Appt Physics Acad. Sci. USSR, 6–32 (in Russian).

    Google Scholar 

  16. Thompson, D’Arcy (1942) On Growth and Form. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  17. Martynov, L.A. (1982) The role of macroscopic processes in morphogenesis. In Mathematical Biology of Development, Zotin, A.I., Presnov, E.V. (eds.), Nauka, Moskva, 135–154 (in Russian).

    Google Scholar 

  18. Beloussov, L.V., Saveliev, S.V., Naumidi, I.I., Novoselov V.V. (1994) Mechanical stresses in embryonic tissues: patterns, morphogenetic role and involvement in regulatory feedback.IntRevCytol., 150, 1–34.

    Google Scholar 

  19. Beloussov, L.V. (1998) The Dynamic Architecture of a Developing Organism. Kluwer Academic Publishers, Dordrecht/Boston/London.

    Google Scholar 

  20. Ermakov, A.S., Beloussov, L.V. (1998) Morphogenetic and differentiation consequences of the relaxations of mechanical tensions in Xenopus laevis blastula. Ontogenez (Russ J Devel Biol), 29, 450–458.

    Google Scholar 

  21. Odell, G.M., Oster, G., Alberch, P., Burnside, B. (1981) The mechanical basis of morphogenesis. I. Epithelial folding and invagination. Devel Biol., 85, 446–462.

    Article  Google Scholar 

  22. Harris, A.K., Stopak, D, Warner, P. (1984) Generation of spatially periodic patterns by a mechanical instability: a mechanical alternative to the Turing model. J. Embryol. Exp. Morphol., 80, 1–20.

    Google Scholar 

  23. Belintzev, B.N., Beloussov, L.V. and Zaraisky, A.G. (1987) Model of pattern formation in epithelial morphogenesis. J. Theor. Biol. 129, 369–394.

    Article  Google Scholar 

  24. Keller, R.E. (1987) Cell rearrangements in morphogenesis. Zool. Sci., 4, 763–779.

    Google Scholar 

  25. Gu, Qiao (1992) Quantum theory of biophoton emission. In Recent Advances in Biophoton Research and its Applications, Popp, F.-A., Li, K.H. and Gu, Q. ( eds. ), World Scientific, 59–112.

    Google Scholar 

  26. Ho, M.W., X.Xu, S.Ross and P.T. Saunders (1992) Light emission and rescattering in synchronously developing populations of early Drosophila embryos. In Recent Advances in Biophoton Research and its Applications, Popp, F.-A., Li, K.H. and Gu, Q. ( eds. ), World Scientific, 287–306.

    Google Scholar 

  27. Gurvich, A.A. (1992) Mitogenetic radiation as an evidence of nonequilibrium properties of living matter. In Recent Advances in Biophoton Research and its Applications, F.-A. Popp, K.H. Li and Q. Gu (eds.), World Scientific, 457–468.

    Google Scholar 

  28. Beloussov L.V., Louchinskaia N.N. (1998) Biophoton emission from developing eggs and embryos: non-linearity, holistic properties and indications of energy transfer. In Biophotons, Chang, Jiin-Ju, Fisch, J. and Popp, F.-A. (eds.), Kluwer Academic Publishers. Dordrecht, Boston, London, 121–142.

    Google Scholar 

  29. Beloussov L.V., Popp, F.-A., Kazakova, N.I. (1997) Ultraweak photon emission of hen eggs and embryos: non-additive interaction of two emitters and stable non-equilibricity. Ontogenez (Russ. J. Devel Biol.), 28, 377–388.

    Google Scholar 

  30. Popp, F.-A. And K.H. Li (1992) Hyperbolic relaxation as a sufficient condition of a fully coherent ergodic field. In Recent Advances in Biophoton Research and its Applications, Popp, F.-A., Li, K.H. and Gu, Q. ( eds. ), World Scientific, 47–58.

    Google Scholar 

  31. Li, Ke-hsueh (1992) Coherence in physics and biology. In Recent Advances in Biophoton Research and its Applications, Popp, F.-A., Li, K.H. and Gu, Q. ( eds. ), World Scientific, 113–156.

    Google Scholar 

  32. Beloussov, L. V., Louchinskaia, N.N. and Burlakov, A.B. (2000) Biophoton emission in fish (Misgurnus fossilis L.):developmental dynamics and optical interactions. http://www.lifescientists.de

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Beloussov, L.V. (2003). Developmental Biology and Physics of Today. In: Popp, FA., Beloussov, L. (eds) Integrative Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0373-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0373-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6228-4

  • Online ISBN: 978-94-017-0373-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics