Skip to main content

Quasi—Nonlinear Functional Evolutions

  • Chapter
  • 212 Accesses

Abstract

In the previous chapter we have considered non-autonomous nonlinear functional evolutions of the type

$$ \left\{ \begin{gathered} \frac{{dx}} {{dt}}(t) + A(t)x(t) \mathrel\backepsilon G(t,x_t )\;0 \leqslant t \leqslant T \hfill \\ x(t) = \varphi (t),\quad - r \leqslant t \leqslant 0 \hfill \\ \end{gathered} \right.\quad $$

in a real Banach space X. We put A(t, ψ) = A(t) − G(t, ψ) in the above.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes for References

  1. M. G. Crandall and P. E. Souganidis (1989). On nonlinear equations of evolution,Nonlin. Anal. TMA 13, 1375 – 1392.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. B. Dhakne and B. G. Pachpatte (1988). On a general class of abstract functional integro-differential equations,Indian J. Pure Appl. Math. 19, 728 – 746.

    MathSciNet  MATH  Google Scholar 

  3. M. B. Dhakne and B. G. Pachpatte (1988). On perturbed abstract functional integro-differential equations,Acta. Math. Sci. 8, 263 – 282.

    MathSciNet  MATH  Google Scholar 

  4. W. E. Fitzgibbon (1977). Stability for abstract nonlinear Volterra equations involving finite delay,J. Math. Anal. Appl. 60, 429 – 434.

    Article  MathSciNet  Google Scholar 

  5. W. E. Fitzgibbon (1978). Semilinear functional differential equations in Banach spaces,J. Diff. Eqns. 29, 1 – 14.

    Article  MathSciNet  MATH  Google Scholar 

  6. W. E. Fitzgibbon (1985). Convergence theorems for semilinear Volterra equations with infinite delay,J. Integ. Eqns. 8, 261 – 274.

    MathSciNet  MATH  Google Scholar 

  7. W. E. Fitzgibbon (1990). Asymptotic behavior of solutions to a class of Volterra integrodifferential equations,J. Math. Anal. Appl. 146, 429 – 434.

    Article  MathSciNet  Google Scholar 

  8. Z. Guan and A. G. Kartsatos (1995). Ranges of perturbed maximal monotone and m-accretive operators in Banach spaces,Trans. Amer. Math. Soc. 347, 2403 – 2435.

    MathSciNet  MATH  Google Scholar 

  9. K. S. Ha, K. Shin and B. J. Jin (1995). Existence of solutions of nonlinear functional integro-differential equations in Banach spaces,Diff. Integ. Eqns.8, 553 – 566.

    MathSciNet  MATH  Google Scholar 

  10. J. G. Jeong and K. Shin (1996). Existence of solution of nonlinear functional differential equations in general Banach spaces,Comm. Korean Math. Soc. 11, 1003 – 1013.

    MathSciNet  MATH  Google Scholar 

  11. B. J. Jin (1993).On the existence of solutions for nonlinear functional integro-differential equations in general Banach spaces, ( Dissertation ), Pusan National University.

    Google Scholar 

  12. A. G. Kartsatos (1978). Perturbations of m-accretive operators and quasi-linear evolution equations,J. Math. Soc. Japan 30, 75 – 84.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. G. Kartsatos (1991). The existence of bounded solutions on the real line of perturbed nonlinear evolution equations in general Banach spaces,Nonlin. Anal. TMA 17, 1085 – 1092.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. G. Kartsatos (1993). On compact perturbations and compact resolvents of nonlinear m-accretive operators in Banach spaces,Proc. Amer. Math. Soc. 119, 1189 – 1199.

    MathSciNet  MATH  Google Scholar 

  15. A. G. Kartsatos (1995). On the construction of the methods of lines for functional evolutions in general Banach spaces,Nonlin. Anal. TMA 25, 1321 – 1331.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. G. Kartsatos (1996). New results in the perturbation theory of maximal monomone and m-accretive operators,Trans. Amer. Math. Soc. 248, 1663 – 1707.

    Article  MathSciNet  Google Scholar 

  17. A. G. Kartsatos (1996).Recent results invoving compact perturbations and compact resolvents of accretive operators in Banach spaces, Proceedings of World Congress of Nonlinear Analysts923, 2197–2222.

    Google Scholar 

  18. A. G. Kartsatos and X. Liu (1997). On the construction and the convergence of the method of lines for quasi-nonlinear functional evolutions in general Banach spaces,Nonlin. Anal. TMA 29, 385 – 414.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. G. Kartsatos and M. E. Parrott (1982). Existence of solutions and Galerkin approximations for nonlinear functional evolution equations,Tôhoku Math. J. 34, 509 – 523.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. G. Kartsatos and M. E. Parrott (1984). A method of lines for a nonlinear abstract functional evolution equation,Trans. Amer. Math. Soc. 286, 73 – 89.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. G. Kartsatos and M. E. Parrott (1984). Functional evolution equations involving time dependent maximal monotone operators in Banach spaces,Non-lin. Anal. TMA8, 817 – 833.

    Article  MathSciNet  MATH  Google Scholar 

  22. P. M. D. Kahn and B. B. Pachpatte (1987). On quasi-linear Volterra integro-differential equation in a Banach space,Indian J. Pure Appl. Math. 18, 32 – 49.

    MathSciNet  Google Scholar 

  23. B. G. Pachpatte (1975). On some integro-differential equations in Banach spaces,Bull. Australian Math. Soc. 12, 337 – 350.

    Article  MATH  Google Scholar 

  24. N. Tanaka (1988). On the existence of solutions for functional evolution equations,Nonlin. Anal. TMA 12, 1087 – 1104.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ha, K.S. (2003). Quasi—Nonlinear Functional Evolutions. In: Nonlinear Functional Evolutions in Banach Spaces. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0365-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0365-9_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6204-8

  • Online ISBN: 978-94-017-0365-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics