Skip to main content
  • 213 Accesses

Abstract

The aim of this chapter is to have results concerning autonomous nonlinear functional evolutions associated with accretive operators in real Banach spaces. In Section 2.1 and Section 2.2 we consider the global existence and uniqueness of solutions with definitions. Section 2.3 and Section 2.4 deal with compactness methods and L P-space methods for existence of solutions, respectively. Section 2.5 is devoted to general methods for existence of solutions. Section 2.6 contains the stability results of solutions. In Section 2.7 examples and applications are treated. Finally, comments and notes for references are given in Section 2.8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes for References

  1. O. Arino, S. Gautier and P. Pennot (1984).A fixed point theorem for sequentially continuous mappings with applications to ordinary differntial equations, Funk. Ekva.27, 273–279.

    Google Scholar 

  2. F. V. Atkinson and J. R. Haddock (1988).On determinig phase spaces for functional differential equations, Funk. Ekva.31, 331–347.

    Google Scholar 

  3. M. Badii, J. I. Diaz and A. Tesei (1984/1985).Existence and attractivity results for a class degenerate functional parabolic problems, (Departamento de Ecuaciones Functionales, Faculiad de Ciencias Matematicas, Univ. Comp. Madrid).

    Google Scholar 

  4. P. Baras (1978). Compacité de l’opérateur f H u solution d’une équation non linéaire (du/dt) + Au 3 f,C.R. Acad. Sc. Paris286, Série A, 1113 – 1116.

    Google Scholar 

  5. V. Barbu (1976).Nonlinear Semigroups and Differential Equations in Banach Spaces, (Noordhoff International Publishing: Leyden, The Netherlands).

    Google Scholar 

  6. D. Bothe (1998). Multi-valued perturbations of m-accretive differential inclusions,Israel J. Math. 108, 109 – 138.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. W. Brewer (1978) A nonlinear semigroup for a functional differential equation,Tranc. Amer. Math. Soc. 236, 173 – 191.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. W. Brewer (1980). The asymptotic stability of a nonlinear functional differnetial equation of infinite delay,Houston J. Math. 6, 321 – 330.

    MathSciNet  MATH  Google Scholar 

  9. D. W. Brewer (1982). Locally Lipschitz continuous functional differential equations and nonlinear semigroups,Illinois J. Math. 26, 374 – 381.

    MathSciNet  MATH  Google Scholar 

  10. C. Corduneanu and V. Lakshmikantham (1980). Equations with unbounded delay: a survey,Nonlin. Anal. TMA 4, 831 – 877.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. G. Crandall and L. C. Evans (1975). On the relation of the operator 8s + ôT to evolution governed by accretive operators,Israel J. Math. 21, 261 – 278.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Dyson and R. Villella-Bressan (1979). Semigroups of translations associated with functional and functional differential equations,Proc. Roy. Soc. Edinb. 82A, 171 – 188.

    Article  MathSciNet  Google Scholar 

  13. J. Dyson and R. Villella-Bressan (1985). A semigroup approach to nonlinear non-autonomous neutral functional differential equations,J. Diff. Eqns. 59, 206 – 228.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Dyson and R. Villella-Bressan (1991). Propagation of solutions of a nonlinear functional differential equation,Diff. Integ. Eqns. 4, 293 – 303.

    MathSciNet  MATH  Google Scholar 

  15. S. Gutman (1982). Compact perturbations of m accretive operators in general Banach spaces,SIAM J. Math. Anal. 13, 789 – 800.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Gutman (1983). Evolutions governed by m-accretive plus compact operators,Nonlin. Anal. TMA 7, 707 – 715.

    Article  MATH  Google Scholar 

  17. K. S. Ha (1979). Sur des semigroupes nonlinéaires dans les espaces L∞(1),J. Math. Soc. Japan 31, 593 – 622.

    Article  MathSciNet  Google Scholar 

  18. K. S. Ha (1987). Theory of Nonlinear Partial Differential Equations with Nonlinear Semigroups (in Korean), (Mineumsa: Seoul).

    Google Scholar 

  19. K. S. Ha (1999). Theory of Functional Differential Equations (in Korean), (Arche: Seoul).

    Google Scholar 

  20. K. S. Ha (2002). Existence of solutions for nonlinear functional differential equations in LP spaces, Differential Equations and Application, Proc. Sixth Int’l Conf. Nonl. Funct. Anal. Appl. 2000, in Masan and Jinju,Korea,2, 43 – 54, ( Nova Science Publshers, Inc.: New York ).

    Google Scholar 

  21. K. S. Ha and K. Shin (1996). Existence of solutions of nonlinear functional differential equations in V’ spaces,Proc. World Congr. Nonl. Analysts 923, 2249 – 2259.

    MathSciNet  Google Scholar 

  22. K. S. Ha, K. Shin and B. J. Jin (1995). Existence of solutions of nonlinear functional integro-differential equations in Banach spaces,Diff. Integ. Eqns.8, 553 – 566.

    MathSciNet  MATH  Google Scholar 

  23. J. R. Haddock and W. E. Hornor (1988). Precompactness and convergence in norm of positive orbits in a certain fading memory space,Funk. Ekva. 31, 349 – 361.

    MathSciNet  MATH  Google Scholar 

  24. J. K. Hale (1969).Ordinary Differential Equations, ( Wiley-Interscience: New York).

    MATH  Google Scholar 

  25. J. K. Hale (1971).Functional Differential Equations, ( Springer—Verlag: Berlin).

    Book  MATH  Google Scholar 

  26. J. K. Hale (1974). Functional differential equations with infinite delays,J. Math. Anal. Appi. 48, 276 – 283.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. K. Hale (1977).Theory of Functional Differential Equations, ( Springer—Verlag: Berlin).

    Book  MATH  Google Scholar 

  28. E. Hille and R. S. Phillips (1957).Functional Analysis and Semigroups, (Amer. Math. Soc.: Rhode Island).

    Google Scholar 

  29. J. G. Jeong and K. Shin (1996). Existence of solution of nonlinear functional differential equations in general Banach spaces,Comm. Korean Math. Soc. 11, 1003 – 1013.

    MathSciNet  MATH  Google Scholar 

  30. B. J. Jin (1993).On the existence of solutions for nonlinear functional integro-differential equations in general Banach spaces, ( Dissertation ), Pusan National University.

    Google Scholar 

  31. J. Kacur (1975). Application of Rothe’s method to nonlinear evolution equations,Mat. Cas 25, 63 – 81.

    MathSciNet  MATH  Google Scholar 

  32. J. Ka6ur (1978). Method of Rothe and nonlinear parabolic boundary value problems of arbitrary order,Czech. Math. J. 28, 507 – 524.

    Google Scholar 

  33. F. Kappel and W. Schappacher (1978). Autonomous nonlinear functional equations and averaging approximations,Nonlin. Anal. TMA 2, 391 – 472.

    Google Scholar 

  34. F. Kappel and W. Schappacher (1979). Non-linear functional differential equations and abstract integral equations,Proc. Royal Soc. Edinb. 84A, 71 – 91.

    Article  MathSciNet  Google Scholar 

  35. F. Kappel and W. Schappacher (1980). Some considerations to the fundamental theorey of infinite delay equations,J. Diff. Eqns. 37, 141 – 183.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. G. Kartsatos (1978). Perturbations of m-accretive operators and quasi-linear evolution equations,J. Math. Soc. Japan 30, 75 – 84.

    Article  MathSciNet  MATH  Google Scholar 

  37. A. G. Kartsatos (1988). A direct method for existence of evolution operators associated with functional evolutions in general Banach spaces,Funk. Ekva. 31, 89 – 102.

    MathSciNet  MATH  Google Scholar 

  38. A. G. Kartsatos (1988). Applications of nonlinear perturbation theorey to the existence of methods of lines for functional evolutions in reflexive Banach spaces,Ann. Univ. Marie Curie Sklodowska 42, 41 – 51.

    MathSciNet  MATH  Google Scholar 

  39. A. G. Kartsatos (1991). The existence of bounded solutions on the real line of perturbed nonlinear evolution equations in general Banach spaces,Nonlin. Anal. TMA 17, 1085 – 1092.

    Article  MathSciNet  MATH  Google Scholar 

  40. A. G. Kartsatos (1993). On compact perturbations and compact resolvents of nonlinear m-accretive operators in Banach spaces,Proc. Amer. Math. Soc. 119, 1189 – 1199.

    MathSciNet  MATH  Google Scholar 

  41. A. G. Kartsatos (1995). On the construction of the methods of lines for functional evolutions in general Banach spaces,Nonlin. Anal. TMA 25, 1321 – 1331.

    Article  MathSciNet  MATH  Google Scholar 

  42. A. G. Kartsatos (1996). New results in the perturbation theory of maximal monomone and m-accretive operators,Trans. Amer. Math. Soc. 248, 1663 – 1707.

    Article  MathSciNet  Google Scholar 

  43. A. G. Kartsatos (1996).Recent results invoving compact perturbations and compact resolvents of accretive operators in Banach spaces, Proceedings of World Congress of Nonlinear Analysts923, 2197–2222.

    Google Scholar 

  44. A. G. Kartsatos and X. Liu (1997). On the construction and the convergence of the method of lines for quasi-nonlinear functional evolutions in general Banach spaces,Nonlin. Anal. TMA 29, 385 – 414.

    Article  MathSciNet  MATH  Google Scholar 

  45. A. G. Kartsatos and M. E. Parrott (1982). Existence of solutions and Galerkin approximations for nonlinear functional evolution equations,Tôhoku Math. J. 34, 509 – 523.

    Article  MathSciNet  MATH  Google Scholar 

  46. A. G. Kartsatos and M. E. Parrott (1983). Convergence of the Kato approximants for evolution equations involving functional perturbations,J. Duff. Eqns. 47, 358 – 377.

    Article  MathSciNet  MATH  Google Scholar 

  47. A. G. Kartsatos and M. E. Parrott (1983). Global solutions of functional evolution equations involving locally defined Lipschitzian perturbations,J. London Math. Soc. 27, 306 – 316.

    Article  MathSciNet  MATH  Google Scholar 

  48. A. G. Kartsatos and M. E. Parrott (1984). A simplified approach to the existence and stability problem of a functional evolution equation in a general Banach space, ‘Infinite Dimensional Systems’ edited by F. Kappel and W. Schappacher,Lecture Notes in Math.1076, 115–122, ( Springer—Verlag: Berlin).

    Google Scholar 

  49. A. G. Kartsatos and M. E. Parrott (1984). A method of lines for a nonlinear abstract functional evolution equation,Trans. Amer. Math. Soc. 286, 73 – 89.

    Article  MathSciNet  MATH  Google Scholar 

  50. A. G. Kartsatos and M. E. Parrott (1984). Functional evolution equations involving time dependent maximal monotone operators in Banach spaces,Non-lin. Anal. TMA8, 817 – 833.

    Article  MathSciNet  MATH  Google Scholar 

  51. A. G. Kartsatos and M. E. Parrott (1988). The weak solution of a functional differential equation in a general Banach space,J. Diff. Eqns. 75, 290 – 302.

    Article  MathSciNet  MATH  Google Scholar 

  52. A. G. Kartsatos and K. Shin (1993). Solvability of functional evolutions via compactness methods in general Banach spaces,Nonlin. Anal. TMA 7, 517 – 535.

    Article  MathSciNet  Google Scholar 

  53. A. G. Kartsatos and K. Shin (1994). The method of lines and the approximation of zeros of m-accretive operators in general Banach spaces,J. Diff. Eqns. 113, 128 – 149.

    Article  MathSciNet  MATH  Google Scholar 

  54. A. G. Kartsatos and W. R. Zigler (1976). Rothe’s methods and weak solutions of perturbed evolution equations in reflexive Banach spaces,Math. Ann. 219, 159 – 166.

    Article  MathSciNet  MATH  Google Scholar 

  55. T. Kato (1967). Nonlinear semigroups and evolution equations,J. Math. Soc. Japan 19, 508 - 520.

    Article  MathSciNet  MATH  Google Scholar 

  56. P. M. D. Kahn and B. B. Pachpatte (1987). On quasi-linear Volterra integro-differential equation in a Banach space,Indian J. Pure Appl. Math. 18, 32 – 49.

    MathSciNet  Google Scholar 

  57. K. Kobayashi (1983), On difference approximation of time dependent nonlinear evolution equations in Banach spaces,Mem. Sagami, Institute Tech. 17, 59 – 69.

    Google Scholar 

  58. Y. Kobayashi (1975) Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups,J. Math. Soc. Japan 27, 640 – 665.

    Article  MathSciNet  MATH  Google Scholar 

  59. Y. Komura (1967). Nonlinear semigroups in Hilbert spaces,J. Math. Soc. Japan 19, 493 – 507.

    Article  MathSciNet  MATH  Google Scholar 

  60. Y. Komura (1969). Differentiability of nonlinear semigroups,J. Math. Soc. Japan 21, 375 – 402.

    Article  MathSciNet  MATH  Google Scholar 

  61. V. Lakshmikantham and S. Leela (1981).Nonlinear Differntial Equations in Abstract Spaces, ( Pergamon Press: New York).

    Google Scholar 

  62. G. Lumer and R. S. Phillips (1961). Dissipative operators in a Banach space,Pacific J. Math. 11, 679 – 698.

    Article  MathSciNet  MATH  Google Scholar 

  63. G. Makay (1994). On the asymptotic stability of the solutions of functional differential equations with infinite delay,J. Diff. Eqns. 108, 139 – 151.

    Article  MathSciNet  MATH  Google Scholar 

  64. R. H. Martin Jr. (1976).Nonlinear Operators and Differential Equations in Banach Spaces, ( John Wiley and Sons: New York).

    MATH  Google Scholar 

  65. E. Mitidieri and I. I. Vrabie (1987). Existence for nonlinear functional differential equations,Hiroshima Math. J. 17, 627 – 649.

    MathSciNet  MATH  Google Scholar 

  66. I. Miyadera (1977).Nonlinear Semigroups(in Japanese), ( Kinokuniya: Tokyo).

    Google Scholar 

  67. C. Morales (1986). Zero for strongly accretive set-valued mappings,Comm. Math. Univ. Caro 27, 455 – 469.

    MATH  Google Scholar 

  68. G. Morsanu (1988).Nonlinear Evolution Equations and Applications, (D. Rei-del Publishing Company: Dordrecht).

    Google Scholar 

  69. R. Nagel (1986).One-Parameter Semigroups of Positive Operators, Lecture Notes on Mathematics 1184, ( Springer—Verlag: Berlin).

    Google Scholar 

  70. J. Necas (1974). Application of Rothe’s method to abstract parabolic equations,Czech. Math. J. 24, 496 – 500.

    MathSciNet  Google Scholar 

  71. S. K. Ntouyas, Y. G. Sficas and P. Ch. Tsamatos (1994). Existence results for initial value problems for neutral functional differential equations,J. Diff. Eqns. 114, 527 – 537.

    Article  MathSciNet  MATH  Google Scholar 

  72. B. G. Pachpatte (1973). A note on Gronwall—Bellman inequality,J. Math. Anal. Appl. 44, 758 – 762.

    Article  MathSciNet  MATH  Google Scholar 

  73. B. G. Pachpatte (1975). On some integro-differential equations in Banach spaces,Bull. Australian Math. Soc. 12, 337 – 350.

    Article  MATH  Google Scholar 

  74. M. E. Parrott (1982). Representation and approximation of generalized solutions of a nonlinear functional differential equation,Nonlin. Anal. TMA 6, 307 – 318.

    Article  MathSciNet  MATH  Google Scholar 

  75. M. E. Parrott (1992). Linearized stability and irreducibility for a functional differential equation,SIAM Math. Anal. 23, 649 – 661.

    Article  MathSciNet  MATH  Google Scholar 

  76. D. Pascali and S. Sburlan (1978).Nonlinear Mappings of Monotone Type, ( Sijthoff and Noordhoff International Publishers: Burcharest).

    MATH  Google Scholar 

  77. N. H. Pavel (1987).Nonlinear Evolution Operators and Semigroups, Lecture Notes in Mathematics 1260, ( Springer—Verlag: Berlin).

    Google Scholar 

  78. A. Pazy (1983).Semigroups of Linear Operators and Applications to Partial Differential Equations, ( Springer—Verlag: Berlin).

    Book  MATH  Google Scholar 

  79. A. T. Plant (1977). Nonlinear semigroups of translations in Banach space generated by functional differential equations, J. Math. Anal. Appl.60, 67 – 74.

    Article  MathSciNet  MATH  Google Scholar 

  80. A. T. Plant (1977). Stability of nonlinear functional differential equations using weighted norms,Houston J. Math. 3, 99 – 108.

    MathSciNet  MATH  Google Scholar 

  81. E. Rothe (1930). Zweidimensionale parabolische Randwert aufgaben als Grenzfall eindimensionaler Rabdwertaufgaben,Math. Ann. 102, 650 – 670.

    Article  MathSciNet  MATH  Google Scholar 

  82. W. M. Ruess (1993). The evolution operator approach to functional differential equations with delay,Proc. Amer. Math. Soc. 119, 783 – 791.

    MathSciNet  MATH  Google Scholar 

  83. W. M. Ruess (1996).Existence of solutions to partial functional differential equations with delay, Proceedings of Theory and Applications of Nonlinear Operators of Accretive and Monotone type(ed. A. G. Kartsatos), (Marcel Dekker: New York ), 259 – 288.

    Google Scholar 

  84. W. M. Ruess (1999). Existence and stability of solutions to partial functional differential equations with delay,Advances Diff. Eqns. 4, 843 – 876.

    MathSciNet  MATH  Google Scholar 

  85. W. M. Ruess and W. H. Summers (1994). Operator semigroups for functional differential equations with infinite delay,Trans. Amer. Math. Soc. 341, 695 – 719.

    MathSciNet  MATH  Google Scholar 

  86. W. M. Ruess and W. H. Summers (1996). Almost periodicity and stability for solutions to functional differential equations with infinte delay,Diff. Integ. Eqns. 9, 1225 – 1252.

    MathSciNet  MATH  Google Scholar 

  87. K. Sawano (1982). Some considerations on the fundamental theorems for functional differential equations with infinite delay,Funk. Ekva. 25, 97 – 104.

    MathSciNet  MATH  Google Scholar 

  88. N. Shioji (1996). Local existence theorems for nonlinear differential equations and compactness of integral solutions in L1(O,T; X),Nonlin. Anal. TMA 26, 799 – 811.

    Article  MathSciNet  MATH  Google Scholar 

  89. R. Schöneberg (1978). Zero of nonlinear monotone operators in Hilbert space,Canadian Math. Bull. 21, 213 – 219.

    Article  MATH  Google Scholar 

  90. N. Tanaka (1988). Nonlinear nonautonomous differential equations,RIMS, Kokyuroku 647, 36 – 56.

    Google Scholar 

  91. N. Tanaka (1988). On the existence of solutions for functional evolution equations,Nonlin. Anal. TMA 12, 1087 – 1104.

    Article  MATH  Google Scholar 

  92. C. C. Travis and G. F. Webb (1974). Existence and stability for partial functional differential equations,Trans. Amer. Math. Soc. 200, 395 – 418.

    Article  MathSciNet  MATH  Google Scholar 

  93. C. C. Travis and G. F. Webb (1976). Partial differential equations with deviating arguments in the time variable,J. Math. Anal. Appl. 56, 397 – 409.

    Article  MathSciNet  MATH  Google Scholar 

  94. I. I. Vrabie (1982). An existence result for a class of nonlinear evolution equations in Banach spaces,Nonlin. Anal. TMA 6, 711 – 722.

    Article  MathSciNet  MATH  Google Scholar 

  95. I. I. Vrabie (1987).Compactness Methods for Nonlinear Evolutions, Pitman Monographs and Surveys in Pure and Applied Mathematics 32, ( Longman Scientific and Technical: London).

    Google Scholar 

  96. G. F. Webb (1974). Autonomous nonlinear functional differential equations and nonlinear semigroups,J. Math. Anal. Appl. 46, 1 – 12.

    Article  MathSciNet  MATH  Google Scholar 

  97. G. F. Webb (1976). Asymptotic stability for abstract nonlinear functional differential equations,Proc. Amer. Math. Soc. 54, 225 – 230.

    Article  MathSciNet  MATH  Google Scholar 

  98. G. F. Webb (1976). Functional differential equations and nonlinear semigroups in L7’-spaces,J. Diff. Eqns. 20, 71 – 89.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ha, K.S. (2003). Autonomous Nonlinear Functional Evolutions. In: Nonlinear Functional Evolutions in Banach Spaces. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0365-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0365-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6204-8

  • Online ISBN: 978-94-017-0365-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics