Skip to main content

Interaction of a Stylar Pectic Polysaccharide and a Basic Protein (SCA) Mediates Lily Pollen Tube Adhesion

  • Chapter

Abstract

Though pectins are implicated in cell adhesion in plants, this has never been tested directly. We developed an in vitro assay to study pollen tube adhesion to the stylar extracellular matrix (ECM) in lily. The adhesion of pollen tubes to the ECM of the stylar transmitting tract epidermis in vivo is proposed to be essential for a proper delivery of the sperm cells to the ovary. Using the assay, we identified two stylar molecules responsible for adhesion, a small protein and a pectic polysaccharide. The combination of at least these two molecules is required for this adhesion event. The 9-kD protein is cysteine-rich with some sequence similarity to lipid transfer protein. We named it stigma/style cysteine-rich adhesin (SCA). The second molecule has been isolated from the style using an imidazole extraction method and is mostly composed of galacturonic acid (70–75 mole%) with arabinosyl, galactosyl, rhamnosyl and glucuronosyl residues. This fraction reacts strongly with JIM5 (monoclonal antibody [MAb] to low esterifed homogalacturonans) and has some reaction with JIM7, LM5 and PAM 1(MAbs to esterified homogalacturonans, β-[1–4]-D-galactans, and blocks of 30 Ga1A repeat units). Pollen tube adhesion can be significantly reduced with a pretreatment of this pectic fraction with endopolygalacturonase. All these data implicate a stylar pectic polysaccharide in lily pollen tube adhesion. In vivo immuno-localization data show that SCA and low esterified homogalacturonan are co-localized at the transmitting tract epidermal surface where the pollen tubes adhere. Binding assays reveal that pectin and SCA bind each other in a pH dependent manner and that binding is necessary to produce pollen tube adhesion in the assay. Involvement of pectic polysaccharide and proteins in cell adhesion will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roberts, K. (1994) The plant extracellular matrix: in a new expansive mood, Curr. Opin. Cell Biol. 6, 1020–1027.

    Article  Google Scholar 

  2. Schopfer, C.R., Nasrallah, M.E., and Nasrallah, J.B. (1999) The male determinant of selfincompatibility in Brassica, Science 286, 1697–1700.

    Article  CAS  Google Scholar 

  3. Cock, J.M., Cabrillac, D., Giranton, J-L., Pastuglia, M., Ruffio-Chable, V., Miege, C., Dumas, C., and Gaude, T. (2000) Investigating the molecular mechanism of the incompatibility response in Brassica, Ann. Bot. 85, 147–153.

    Article  CAS  Google Scholar 

  4. Miki-Hirosige, H., Hoek, I.H., and Nakamura, S. (1987) Secretions from the pistil of Lilium longiflorum, Am. J. Bot. 74, 1709–1715.

    Article  CAS  Google Scholar 

  5. Lord, E.M. (2000) Adhesion and cell movement during pollination: cherchez la femme, Trends Plant Sci. 5, 368–373.

    Article  PubMed  CAS  Google Scholar 

  6. Lord, E.M., Mollet, J-C., and Park, S-Y. (2001) In vivo pollen tube growth: Tube cell adhesion and movement in lily, in A. Geitmann, M. Cresti and I.B. Heath (eds.), Cell Biology of Plant and Fungal Tip Growth, NATO Science Series, IOS Press, pp. 187–201.

    Google Scholar 

  7. Jauh, G-Y., and Lord, E.M. (1995) Movement of the tube cell in the lily style in the presence of the pollen grain and the spent pollen tube, Sex. Plant Reprod. 8, 168–172.

    Article  Google Scholar 

  8. Jauh, G.Y., Eckard, K.J., Nothnagel, E.A., and Lord, E.M. (1997) Adhesion of lily pollen tubes on an artificial matrix, Sex. Plant Reprod. 10, 173–180.

    Article  Google Scholar 

  9. Park, S-Y., Jauh, G-Y., Mollet, J-C., Eckard, K.J., Nothnagel, E.A., Walling, L.L., and Lord, E.M. (2000) A lipid transfer like protein is necessary for lily pollen tube adhesion to an in vitro stylar matrix, Plant Cell 12, 151–163.

    PubMed  CAS  Google Scholar 

  10. Kader, J-C. (1997) Lipid-transfer proteins: a puzzling family of plant proteins, Trends Plant Sci. 2, 66–70.

    Article  Google Scholar 

  11. Thoma, S., Hecht, U., Kippers, A., Botella, J., De Vries, S., and Somerville, C.R. (1994) Tissue-specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis, Plant Physiol. 105, 35–45.

    Article  CAS  Google Scholar 

  12. Arondel, V., Vergnolle, C., Cantrel, C., and Kader, J-C. (2000) Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana, Plant Sci. 157, 1–12.

    Article  CAS  Google Scholar 

  13. Segura, A., Moreno, M., and Garcia-Olmedo, F. (1993) Purification and antipathogenic activity of lipid transfer proteins (LTPs) from the leaves of Arabidopsis and spinach, FEBS Lett. 332, 243–246.

    Article  PubMed  CAS  Google Scholar 

  14. Park, S.Y., and Lord, E.M. Expression studies of SCA in lily and confirmation of its role in pollen tube adhesion (submitted).

    Google Scholar 

  15. Mollet, J-C., Park, S-Y., Nothnagel, E.A., and Lord, E.M. (2000) A lily stylar pectin is necessary for pollen tube adhesion to an in vitro stylar matrix, Plant Cell 12, 1737–1749.

    PubMed  CAS  Google Scholar 

  16. Knox, P.J., Linstead, P.J., King, J., Cooper, C., and Roberts, K. (1990) Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices, Planta 181, 512–521.

    Article  CAS  Google Scholar 

  17. Pennell, R.I, Janniche, L., Kjellbom, P., Scofiield, G.N., Peart, J.M., and Roberts, K. (1991) Developmental regulation of a plasma membrane arabinogalactan protein epitope in oilseed rape flowers, Plant Cell3, 1317–1326.

    PubMed  CAS  Google Scholar 

  18. Yates, E.A., Valdor, J-F., Haslam, S.M., Morris, H.R., Dell, A., Mackie, W., and Knox, J.P. (1996) Characterization of carbohydrate structural features recognized by anti-arabinogalactan-protein monoclonal antibodies, Glycobiology 6, 131–139.

    Article  PubMed  CAS  Google Scholar 

  19. Willats, W.G.T., Gilmartin, P.M., Mikkelsen, J.D., and Knox, J.P. (1999) Cell wall antibodies without immunization: Generation and use of de-esterifiied homogalacturonan block-specific antibodies from a naive phage display library, Plant J. 18, 57–65.

    Article  PubMed  CAS  Google Scholar 

  20. Moore, P.J., Darvill, A.G., Albersheim, P., and Staehelin, A.L. (1986) Immunogold localization of xyloglucan and rhamnogalacturonan I in the cell walls of suspension-cultured sycamore cells, Plant Physiol. 82, 787–794.

    Article  PubMed  CAS  Google Scholar 

  21. Jones, L., Seymour, G.B., and Knox, J.P. (1997) Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1 -→4)-β-D-galactan, Plant Physiol. 113, 1405–1412.

    PubMed  CAS  Google Scholar 

  22. Willats, W.G.T., Marcus, S.E., and Knox, J.P. (1998) Generation of a monoclonal antibody specific to (1→5)-a-L-arabinan, Carbohydr. Res. 308, 149–152.

    Article  PubMed  CAS  Google Scholar 

  23. Nothnagel, E.A. (1997) Proteoglycans and related components in plant cells, Int. Rev. Cytol. 174, 195–291.

    Article  PubMed  CAS  Google Scholar 

  24. Knox, P.J. (1997) The use of antibodies to study the architecture and developmental regulation of plant cell walls, Int. Rev. Cytol. 171, 79–120.

    Article  PubMed  CAS  Google Scholar 

  25. Sinha, N., and Lynch, M. (1998) Fused organs in the adherent] mutation in maize show altered epidermal walls with no perturbations in tissue identities, Planta 206, 184–195.

    Article  CAS  Google Scholar 

  26. Sieber, P., Schorderet, M., Ryser, U., Buchala, A., Kolattukudy, P., Metraux, J.-P., and Nawrath, C. (2000) Transgenic Arabidopsis plants expressing a fungal cutinase show alterations in the structure and properties of the cuticle and postgenital organ fusions, Plant Cell 12, 721–737.

    PubMed  CAS  Google Scholar 

  27. Liners, F., Gaspar, T., and Van Cutsem, P. (1994) Acetyl- and methyl-esterification of pectins of friable and compact sugar-beet calli: Consequences for intercellular adhesion, Planta 192, 545–556.

    Article  CAS  Google Scholar 

  28. Kikuchi, A., Edashige, Y., Ishii, T., Fujii, T., and Satoh, S. (1996) Variations in the structure of neutral sugar chains in the pectic polysaccharides of morphologically different carrot calli and correlations with the size of cell clusters, Planta 198, 634–639.

    Article  PubMed  CAS  Google Scholar 

  29. Gross, K.C., and Sams, C.E. (1984) Changes in cell wall neutral sugar composition during fruit ripening: a species survey, Phytochemistry 23, 2457–2461.

    Article  CAS  Google Scholar 

  30. Jarvis, M.C. (1984) Structure and properties of pectin gels in plant cell walls, Plant Cell Environ. 7, 153–164.

    CAS  Google Scholar 

  31. Scavetta, RD., Herron, S.R., Hotchkiss, A.T., Kita, N., Keen, N.T., Benen, J.A., Kester, H.C., Visser, J., and Jurnak, F. (1999) Structure of plant cell wall fragment complexed to pectate lyase C, Plant Cell 11, 1081–1092.

    PubMed  CAS  Google Scholar 

  32. Cassab, G.I. (1998) Plant cell wall proteins, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 281–309.

    Article  PubMed  CAS  Google Scholar 

  33. Qi, X.Y., Beherens, B.X., West, P.R., and Mort, A.J. (1995) Solubilization and partial characterization of extensin fragments from cell walls of cotton suspension cultures: Evidence for a covalent cross-link between extensin and pectin, Plant Physiol. 108, 1691–1701.

    Article  PubMed  CAS  Google Scholar 

  34. Carpin, S., Crevecoeur, M., de Meyer, M., Simon, P., Greppin, H., and Penel, C. (2001) ldentitication of a Ca2+-pectate binding site on an apoplastic peroxidase, Plant Cell 13, 511–520.

    PubMed  CAS  Google Scholar 

  35. MacDougall, A.J., Brett, G.M., Morris, V.J., Rigby, N.M., Ridout, M.J., and Ring, S.G (2001) T he effect of peptide-pectin interactions on the gelation behaviour of plant cell wall pectin, Carbohydr. Res. 335. 115–126.

    Article  PubMed  CAS  Google Scholar 

  36. Fiete, D.J., Beranek, M.C., and Baenziger, J.U. (1998) A cysteine-rich domain of the “mannose” receptor mediates GaINAc-4–504 binding, Proc. Natl. Acad. Sci. USA 95, 2089–2093.

    Article  PubMed  CAS  Google Scholar 

  37. Rini, J.M. (1995) Lectin structure, Annu. Rev. Biophys. Biomol. Struct. 24, 551–577.

    Article  PubMed  CAS  Google Scholar 

  38. Baldwin, T.C., McCann, M.C., and Roberts, K. (1993) A novel hydroxyproline-deficient arabinogalactan protein secreted by suspension-cultured cells of Daucus carota. Purification and partial characterization, Plant Physiol. 103, 115–123.

    PubMed  CAS  Google Scholar 

  39. Youl, J., Bacic, A., and Oxley, D. (1998) Arabinogalactan-proteins from Nicotiana alata ana Pyrus communis contain glycosylphosphatidylinositol membrane anchors, Proc. Natl. Acad. Sci. USA. 95, 7921–7926.

    Article  PubMed  CAS  Google Scholar 

  40. Svetek, J., Yadav, M.P., and Nothnagel, E.A. (1999) Presence of a glycosylphosphatidylinositol lipid anchor on rose arabinogalactan proteins, J. Biol. Chem. 27, 14724–14733.

    Article  Google Scholar 

  41. Schultz, C.J., Johnson, K.L., Currie, G., and Bacic, A. (2000) The classical arabinogalactan protein gene nf ,4rahidonsis. Plant Cell 12. 1751–1767.

    CAS  Google Scholar 

  42. Wagner, T., and Kohorn, B.D. (2001) Wall-associated kinases are expressed throughout plant development and are required for cell expansion, Plant Cell 13, 303–318.

    PubMed  CAS  Google Scholar 

  43. Jauh, G.Y., and Lord, E.M. (1996) Localization of pectins and arabinogalactan-proteins in lily (Lilium longiflorum L.) pollen tube and style, and their possible roles in pollination, Planta 199, 251–261.

    Article  CAS  Google Scholar 

  44. Taylor, L.P., and Hepler, P.K. (1997) Pollen germination and tube growth, Annu. Rev. Plant. Physiol. Plant Mol. Biol. 48, 461–491.

    Article  PubMed  CAS  Google Scholar 

  45. Lennon, K.A., and Lord, E.M. (2000) The in vivo pollen tube cell of Arabidopsis thaliana, I: tube cell cytoplasm and wall, Protoplasma 214, 45–56.

    Article  Google Scholar 

  46. Matoh, T., Takasaki, M., Takabe, K., and Kobayashi, M. (1998) Immunocytocherrvstry ot rhamnogalacturonan II in cell walls of higher plants, Plant Cell Physiol. 39, 483–491.

    Article  CAS  Google Scholar 

  47. Hadfiield, K.A., and Bennett, A.B. (1998) Polygalacturonases: Many genes in search of a function, Plant Physiol. 117. 337–343.

    Article  Google Scholar 

  48. Wu, H-M., Wang, H., Cheung, A.Y. (1995) A pollen tube growth stimulatory glycoprotein is deglycosylated by pollen tubes and displays a glycosylation gradient in the flower, Cell 82, 395–403.

    Article  PubMed  CAS  Google Scholar 

  49. Fry, S.C., Aldington, S., Hetherington, P.R., and Aitken, J. (1993) Oligosaccharides as signals and substrates in the plant cell wall, Plant Physiol. 103, 1–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mollet, JC., Park, SY., Lord, E.M. (2003). Interaction of a Stylar Pectic Polysaccharide and a Basic Protein (SCA) Mediates Lily Pollen Tube Adhesion. In: Voragen, F., Schols, H., Visser, R. (eds) Advances in Pectin and Pectinase Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0331-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0331-4_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6229-1

  • Online ISBN: 978-94-017-0331-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics