Skip to main content

Quantum Nuclear Dynamics of the H +3 -System and Its Isotopomers

  • Chapter
Explicitly Correlated Wave Functions in Chemistry and Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 13))

Abstract

H +3 was discovered by Thomson, 1911 [1], and Coulson, 1935 [2] predicted the equilibrium structure of H +3 (for the electronic singlet state) to be an equilateral triangle with a bond length of 1.61 a0 (0.85 Å) quite close to the modern value of 1.6500 a o [3, 4]. With the advent of computers, this prediction was confirmed and the stability of the nonclassical three-center, two- electron bond was established (Cristofferson et al. 1964 [5]; Conroy 1964 [6]). From the early theoretical work it was soon evident that H +3 has no stable electronically excited singlet state and its only sharp spectrum would be the vibration-rotation spectrum in the infrared (Carney and Porter, 1976 [7]; Watson, 1984 [8,9]; Sutcliffe and Tennyson, 1987 [10]). The detection of H +3 had to await the age of laser spectroscopy (Oka, 1980 [11]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. J. Thomson, Phil. Mag. 83, 225 (1911).

    Google Scholar 

  2. C. A. Coulson, Proc. Camb. Phil. Soc. 31, 244 (1935).

    Article  Google Scholar 

  3. T. Oka, Phil. Trans. R. Soc. Lond. A358, 2363 (2000).

    Article  CAS  Google Scholar 

  4. E. Herbst, S. Miller, T. Oka, and J. K. G. Watson (Eds.), The Royal Society Discussion Meeting on Astronomy, Physics, and Chemistry of Ht, Phil. Trans. R. Soc. Lond. A358, 2359–2559 (2000).

    Google Scholar 

  5. R. E. Cristofferson, S. Hagstrom, and F. Prosser, J. Chem. Phys. 40, 236 (1964).

    Article  Google Scholar 

  6. H. Conroy, J. Chem. Phys. 40, 603 (1964).

    Article  CAS  Google Scholar 

  7. G. D. Carney and R. N. Porter, J. Chem. Phys. 60, 4521 (1974); 65, 3547 (1976).

    CAS  Google Scholar 

  8. J. K. G. Watson, J. Mol. Struct. 103, 350 (1984).

    Google Scholar 

  9. J. K. G. Watson, Phil. Trans. R. Soc. Lond. A358, 2371 (2000).

    Article  Google Scholar 

  10. B. T. Sutcliffe and J. Tennyson, J. Chem. Soc. Faraday Trans. 83, 1663 (1987).

    Article  CAS  Google Scholar 

  11. T. Oka, Phys. Rev. Lett. 45, 531 (1980).

    Article  CAS  Google Scholar 

  12. B. J. McCall, Phil. Trans. R. Soc. Lond. A358, 2385 (2000).

    Article  CAS  Google Scholar 

  13. S. Miller and J. Tennyson, Chem. Soc. Rev. 21, 281 (1992).

    Article  CAS  Google Scholar 

  14. R. Röhse and W. Klopper, W. Kutzelnigg, J. Chem. Phys. 99, 8830 (1993).

    Article  Google Scholar 

  15. J. B. Anderson, J. Chem. Phys. 96, 307 (1992).

    Article  Google Scholar 

  16. W. Meyer, P. Botschwina, and P. G. Burton, J. Chem. Phys. 84, 891 (1986).

    Article  CAS  Google Scholar 

  17. R. Röhse, W. Kutzelnigg, R. Jaquet, and W. Klopper, J. Chem. Phys. 101, 2231 (1994).

    Article  Google Scholar 

  18. R. Jaquet and R. Röhse, Mol. Phys. 84, 291 (1995).

    Article  CAS  Google Scholar 

  19. W. Kutzelnigg, Theor. Chim. Acta. 68, 445 (1985).

    Article  CAS  Google Scholar 

  20. W. Kutzelnigg and W. Klopper, J. Chem. Phys. 94, 1985 (1991).

    Article  CAS  Google Scholar 

  21. O. L. Polyansky, B. M. Dinelli, C. R. Le Sueur, and J. Tennyson, J. Chem. Phys. 102, 9322 (1995).

    Article  CAS  Google Scholar 

  22. B. M. Dinelli, C. R. Le Sueur, J. Tennyson, and R. D. Amos, Chem. Phys. Lett. 232, 295 (1995).

    Article  CAS  Google Scholar 

  23. B. M. Dinelli, S. Miller, and J. Tennyson, J. Mol. Spectr. 163, 71 (1994).

    Article  CAS  Google Scholar 

  24. J. Tennyson and O. L. Polyansky, Phys. Rev. A. 50, 314 (1994).

    Article  CAS  Google Scholar 

  25. B. M. Dinelli, O. L. Polyansky, and J. Tennyson, J. Chem. Phys. 103, 10433 (1995).

    Article  CAS  Google Scholar 

  26. B. M. Dinelli, L. Neale, O. L. Polyansky, and J. Tennyson, J. Mol. Spectr. 181, 142 (1997).

    Article  CAS  Google Scholar 

  27. W. Cencek, J. Rychlewski, R. Jaquet, and W. Kutzelnigg, J. Chem. Phys. 108, 2831 (1998).

    Article  CAS  Google Scholar 

  28. R. Jaquet, W. Cencek, W. Kutzelnigg, and J. Rychlewski, J. Chem. Phys. 108, 2837 (1998).

    Article  CAS  Google Scholar 

  29. R. Jaquet, Chem. Phys. Lett. 302, 27 (1999).

    CAS  Google Scholar 

  30. R. Jaquet, Spectrochimica Acta A58, 691 (2002).

    Article  Google Scholar 

  31. O. L. Polyansky and J. Tennyson, J. Chem. Phys. 110, 5056 (1999).

    Article  CAS  Google Scholar 

  32. R. Röhse and R. Jaquet, adiabatic and non-adiabatic coupling elements for H3 with FULL-CI (i. e. the CI-R12 program, where the R12-part is switched off), unpublished results (1999).

    Google Scholar 

  33. A. Carrington, I. R. McNab, and Y. D. West, Mol. Phys. 98, 1073 (1993).

    CAS  Google Scholar 

  34. I. R. McNab, Adv. Chem. Phys. 98, 1 (1994).

    Article  Google Scholar 

  35. F. Kemp, C. E. Krik, and I. R. McNab, Phil. Trans. R. Soc. Lond. A358, 2403 (2000).

    Article  CAS  Google Scholar 

  36. W. Cencek, J. Komasa, and J. Rychlewski, Chem. Phys. Lett. 246, 417 (1995).

    Article  CAS  Google Scholar 

  37. G. C. Lie and D. Frye, J. Chem. Phys. 96, 6784 (1992).

    Article  CAS  Google Scholar 

  38. G. D. Carney, and R. N. Porter, Phys. Rev. Lett. 45, 537 (1980).

    Article  CAS  Google Scholar 

  39. C. Sanz, O. Roncero, C. Tablero, A. Aguado, and M. Paniagua, J. Chem. Phys. 114, 2184 (2001).

    Article  CAS  Google Scholar 

  40. O. Friedrich, A. Alijah, Z. Xu, and A. J. C. Varandas, Phys. Rev. Lett. 86, 1183 (2001).

    Article  CAS  Google Scholar 

  41. O. L. Polyansky, R. Prosmiti, W. Klopper, and J. Tennyson, Mol. Phys. 98, 261 (2000).

    Article  CAS  Google Scholar 

  42. R. Prosmiti, O. L. Polyansky, and J. Tennyson, Chem. Phys. Lett. 273, 107 (1997).

    Article  CAS  Google Scholar 

  43. A. Aguado, O. Roncero, C. Tablero, C. Sanz, and M. Paniagua, J. Chem. Phys. 112, 1240 (2000).

    Article  CAS  Google Scholar 

  44. J. K. G. Watson, cited in Table 2 in 50.

    Google Scholar 

  45. L. Neale, S. Miller, and J. Tennyson, Astrophys. J. 464, 516 (1996).

    Article  CAS  Google Scholar 

  46. B. M. Dinelli, L. Neale, O. L. Polyansky, and J. Tennyson, J. Mol. Spectr. 181, 142 (1997).

    Article  CAS  Google Scholar 

  47. J. C. Tully and P. K. Preston, J. Chem. Phys. 55 (1971) 562; 54, 4297 (1971).

    Google Scholar 

  48. P. J. Kuntz, in The concept of the chemical bond, edited by Z. B. Maksic, ( Springer, Berlin, 1993 ), p. 321.

    Google Scholar 

  49. F. A. Gianturco and F. Schneider, Adv. Chem. Phys. 82, 135 (1992).

    Article  CAS  Google Scholar 

  50. B. J. McCall and T. Oka, J. Chem. Phys. 113, 3104 (2000).

    Article  CAS  Google Scholar 

  51. C. M. Lindsay and B. J. McCall, J. Mol. Spectr. 210, 60 (2001).

    Article  CAS  Google Scholar 

  52. B. J. McCall, PhD-thesis, Dep. of Chemistry, ( University of Chicago, 2001 ).

    Google Scholar 

  53. G. C. Schatz, Rev. Mod. Phys. 61, 669 (1989).

    Article  Google Scholar 

  54. D. J. Searles and E. I. von Nagy-Felsobuki, Ab initio variational calculations of molecular vibrational rotational spectra, Lecture Notes in Chemistry 61, ( Springer, Berlin, 1993 ).

    Google Scholar 

  55. A. J. C. Varandas, Adv. Chem. Phys. 74, 255 (1988).

    Article  Google Scholar 

  56. P. G. Mezey, Potential energy hypersurfaces, ( Elsevier, Amsterdam, 1987 ).

    Google Scholar 

  57. M. M. Law and J. M. Hutson, Comput. Phys. Commun. 102, 252 (1997).

    Article  CAS  Google Scholar 

  58. J. N. Murrell, S. Carter, S. C. Farantos, P. Huxley, and A. J. C. Varandas, Molecular potential energy functions, ( Wiley, Brisbane, 1984 ).

    Google Scholar 

  59. R. Jaquet, in Potential Energy Surfaces, edited by A. Sax, Lecture Notes in Chemistry, ( Springer, Berlin, 1999 ), 71, p. 95.

    Google Scholar 

  60. T. S. Ho and H. Rabitz, J. Chem. Phys. 104, 2584 (1996).

    Article  CAS  Google Scholar 

  61. P. G. Burton, E. I. von Nagy-Felsobuki, G. Doherty, and M. Hamilton, Mol. Phys. 55, 527 (1985).

    Article  CAS  Google Scholar 

  62. A. Ichihara and K. Yokoyama, J. Chem. Phys. 103, 2109 (1995).

    Article  CAS  Google Scholar 

  63. W. Klopper and W. Kutzelnigg, Chem. Phys. Lett. 134, 17 (1987).

    Article  CAS  Google Scholar 

  64. W. Klopper and R. Röhse, Theor. Chim. Acta. 83, 441 (1992).

    Article  CAS  Google Scholar 

  65. J. Rychlewski, W. Cencek, J. Komasa, Chem. Phys. Lett. 229, 657 (1994).

    Article  CAS  Google Scholar 

  66. R. J. Gdanitz and R. Röhse, Int. J. Quant. Chem. 55, 147 (1995); 59, 505 (1996).

    Article  CAS  Google Scholar 

  67. R. Röhse and R. Jaquet, CI-R12 calculations for H3 for additional points far above the barrier to linearity and in the asymptotic (H+ + H2) region, without f-functions, unpublished results (1999).

    Google Scholar 

  68. DALTON, an ab initio electronic structure program, Release 1.0 (1997), written by T. Helgaker, H. J. Aa. Jensen, P. Jorgensen, J. Olsen, K. Ruud, H. Agren, T. Andersen, K. L. Bak, V. Bakken, O. Christiansen, P. Dahle, E. K. Dalskov, T. Enevoldsen, B. Fernandez, H. Heiberg, H. Hettema, D. Jonsson, S. Kirpekar, R. Kobayashi, H. Koch, K. V. Mikkelsen, P. Norman, M. J. Packer, T. Saue, P. R. Taylor, and O. Vahtras.

    Google Scholar 

  69. J. D. Augspurger and C. E. Dykstra, J. Chem. Phys. 88, 3817 (1988).

    Article  CAS  Google Scholar 

  70. L. Wolniewicz and J. Hinze, J. Chem. Phys. 101, 9817 (1994).

    Article  CAS  Google Scholar 

  71. R. T. Pack and G. A. Parker, J. Chem. Phys. 87, 3888 (1987).

    Article  CAS  Google Scholar 

  72. N. C. Handy, Y. Yamaguchi, and H. F. Schaefer III, J. Chem. Phys. 84, 4481 (1986).

    Article  CAS  Google Scholar 

  73. A. G. Ioannou, R. D. Amos, and N. C. Handy, Chem. Phys. Lett. 251, 52 (1996).

    Article  CAS  Google Scholar 

  74. N. C. Handy and A. M. Lee, Chem. Phys. Lett. 252, 425 (1996).

    Article  CAS  Google Scholar 

  75. M. Born and K. Huang, Dynamical theory of crystal lattices (Oxford Unviersity Press, New York, 1956 ).

    Google Scholar 

  76. R. D. Bardo and M. Wolfsberg, J. Chem. Phys. 68, 2686 (1978).

    Article  CAS  Google Scholar 

  77. W. Kutzelnigg, Mol. Phys. 90, 909 (1997).

    Article  CAS  Google Scholar 

  78. J. K. G. Watson, J. Mol. Spectr. 45, 99 (1973).

    Article  Google Scholar 

  79. J. K. G. Watson, J. Mol. Spectr. 80, 411 (1980).

    Article  Google Scholar 

  80. R. M. Herman and A. Asgharian, J. Mol. Spectr. 19, 305 (1964).

    Article  Google Scholar 

  81. J. Tennyson, in Computational Molecular Spectroscopy, edited by P. Jensen and P. R. Bunker (Wiley, 2000 ), p. 305.

    Google Scholar 

  82. B. T. Sutcliffe and J. Tennyson, Int. J. Quant. Chem. 29, 183 (1991).

    Article  Google Scholar 

  83. J. Tennyson and B. T. Sutcliffe, Mol. Phys. 51, 887 (1984).

    Article  CAS  Google Scholar 

  84. J. Tennyson and S. Miller, Comput. Phys. Commun. 55, 149 (1989).

    Article  CAS  Google Scholar 

  85. R. Jaquet, program package FEMEIG, 3D eigenvalue solver of bound and quasi-bound problems using finite elements methods, unpublished (1997).

    Google Scholar 

  86. R. Jaquet, A. Kumpf, and M. Heinen, J. Chem. Soc. Faraday Trans. 93, 1027 (1997).

    Article  CAS  Google Scholar 

  87. A. Kumpf, PhD-thesis, Dep. of Chemistry, ( University Siegen, 1999 ).

    Google Scholar 

  88. R. Jaquet, Comput. Phys. Commun. 58, 257 (1990).

    Google Scholar 

  89. S. Miller and J. Tennyson, J. Mol. Spectr. 128, 183 (1987).

    Article  Google Scholar 

  90. M. Quack, Mol. Phys. 34, 477 (1977).

    Article  CAS  Google Scholar 

  91. R. E. Moss, Mol. Phys. 89, 195 (1996).

    Article  Google Scholar 

  92. P. R. Bunker and R. E. Moss, Mol. Phys. 33, 417 (1977).

    Article  CAS  Google Scholar 

  93. M. A. Kostin, O. L. Polyansky, and J. Tennyson, J. Chem. Phys. 116, 7564 (2002).

    Article  CAS  Google Scholar 

  94. A. Alijah, J. Hinze, and L. Wolniewicz, Mol. Phys. 85, 1105 (1995).

    Article  CAS  Google Scholar 

  95. A. Alijah, L. Wolniewicz, and J. Hinze, Mol. Phys. 85, 1125 (1995).

    Article  CAS  Google Scholar 

  96. A. Alijah and M. Beuger, Mol. Phys. 88, 497 (1996).

    Article  CAS  Google Scholar 

  97. J. Hinze, A. Alijah, and L. Wolniewicz, Polish J. Chem. 72, 1293 (1998).

    CAS  Google Scholar 

  98. P. Schiffels, A. Alijah, and J. Hinze, Mol. Phys. 101, 175; 189 (2003).

    Article  CAS  Google Scholar 

  99. L. Kao, T. Oka, S. Miller, and J. Tennyson, Astrophys. J. Suppl. Ser. 77, 317 (1991).

    Article  CAS  Google Scholar 

  100. S. C. Foster, A. R. W. McKellar, I. R. Peterkin, J. K. G. Watson, F. S. Pan, M. W. Crofton, R. S. Altman, and T. Oka, J. Chem. Phys. 84, 91 (1985).

    Article  Google Scholar 

  101. I. N. Kozin, O. L. Polyansky, and N. F. Zobov, J. Mol. Spectr. 128, 126 (1988).

    Article  CAS  Google Scholar 

  102. O. L. Polyansky, and A. R. W. McKellar, J. Chem. Phys. 92, 4039 (1990).

    Article  Google Scholar 

  103. J. T. Shy, J. W. Farley, W. E. Lamb, and W. H. Wing, Phys. Rev. Lett. 45, 535 (1980).

    Article  CAS  Google Scholar 

  104. R. Jaquet and A. Alijah, comparison of eigenvalues for H3 based on calculations with hyperspherical and Jacobi coordinates.

    Google Scholar 

  105. J. Tennyson, J. R. Henderson, and N. G. Fulton, Comput. Phys. Commun. 86, 175 (1995).

    Article  CAS  Google Scholar 

  106. J. Tennyson, Rep. Prog. Phys. 57, 421 (1995).

    Article  Google Scholar 

  107. M. G. Bawendi, B. D. Rehfus, and T. Oka, J. Chem. Phys. 93, 6200 (1990).

    Article  CAS  Google Scholar 

  108. M. Baer, G. Niedner-Schattenburg, and J. P. Toennies, J. Chem. Phys. 91, 4169 (1989).

    Article  CAS  Google Scholar 

  109. G. Niedner, M. Noll, and J. P. Toennies, J. Chem. Phys. 87, 2685 (1987).

    Article  CAS  Google Scholar 

  110. R. Jaquet and C. Morari, wave packet calculations, unpublished (2001).

    Google Scholar 

  111. C. Morari, PhD-thesis, Dep. of Chemistry, ( University Siegen, 2001 ).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jaquet, R. (2003). Quantum Nuclear Dynamics of the H +3 -System and Its Isotopomers. In: Rychlewski, J. (eds) Explicitly Correlated Wave Functions in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0313-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0313-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6448-6

  • Online ISBN: 978-94-017-0313-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics