Skip to main content

On the Calculation of Microstructures for Inelastic Materials using Relaxed Energies

  • Conference paper
IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 108))

Abstract

The convexity of energy functionals for inelastic materials is analyzed on the basis of an incremental variational principle. Non-quasiconvex problems give rise to microstructures and often exhibit mesh-dependent results when being solved by standard solution methods, e.g., FEM. A partial rank-one convexification enables a reduction of the mesh-dependency and allows to predict the occurrence and distribution of microstructures independent of the numerical realization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball, J.M. (1977). Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Analysis, 63, 337–403.

    Article  MATH  Google Scholar 

  2. Carstensen, C. and Hackl, K. (2000). On microstructures occurring in a model of finitestrain elastoplasticity involving a single slip-system. Z. Angew. Math. Mech., 80, S42—S422.

    Article  Google Scholar 

  3. Carstensen, C., Hackl, K. and Mielke, A. (2001). Nonconvex potentials and microstructures in finite-strain plasticity. Proc. Roy. Soc. London, (accepted).

    Google Scholar 

  4. Dacorogna, B. (1989). Direct methods in the calculus of variations, Springer Verlag.

    Book  MATH  Google Scholar 

  5. Hackl, K. (1997). Generalized standard media and variational principles in classical and finite strain elastoplasticity. J. Mech. Phys. Solids, 45, 667–688.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Halphen, B. and Nguyen, Q. (1975). Sur les matériaux standards géneralises. J. Mechanique, 14, 39–63.

    MATH  Google Scholar 

  7. Luskin, M. (1996). On the computation of crystalline microstructure. Acta Numerica, 191–256.

    Google Scholar 

  8. Marsden, J. and Hughes, T. (1983). Mathematical Foundation of Elasticity. Prentice-Hall.

    Google Scholar 

  9. Mielke, A. (2002). Finite plasticity, lie groups and geodesics on sl(d). Geometry, Dynamics, and Mechanics, P. Newton, A. Weinstein, R Holmes (eds.), to appear.

    Google Scholar 

  10. Morrey, C. (1952). Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific Journal Math., 2, 25–53.

    Article  MATH  MathSciNet  Google Scholar 

  11. Ortiz, M. and Repetto, E. (1999). Nonconvex energy minimisation and dislocation in ductile single crystals. J. Mech. Physics Solids, 47, 397–462.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Roubicěk, T. (1997). Relaxation in optimization theory and variational calculus, De Gruyter.

    Book  MATH  Google Scholar 

  13. Spellucci, R (1998). An SQP method for general nonlinear programs using only equality constrained subproblems. Math. Prog., 82, 413–448.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Hackl, K., Hoppe, U. (2003). On the Calculation of Microstructures for Inelastic Materials using Relaxed Energies. In: Miehe, C. (eds) IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains. Solid Mechanics and Its Applications, vol 108. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0297-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0297-3_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6239-0

  • Online ISBN: 978-94-017-0297-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics