Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 108))

  • 447 Accesses

Abstract

We show how the theory of crystals with microstructure developed by Ortiz et al. can be applied to predict salient aspects of the body of experimental data compiled by Hughes et al. regarding lamellar dislocation structures in crystals deformed to large strains. The theory correctly predicts the statistics of misorientation angles and lamellar boundary spacings; and the scaling of the average misorientation and spacing with increasing macroscopic strain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubry, S. and Ortiz, M. (2002). The mechanics of deformation-induced subgrain dislocation structures in metallic crystals at large strains. submitted to Proceedings of the royal society of london.

    Google Scholar 

  2. Godfrey, A. and Hughes, D.A. (2000). Scaling of the spacing of deformation induced dislocation boundaries. Acta Materialia, 48(8), 1897–1905.

    Article  Google Scholar 

  3. Hansen, N. and Hughes, D.A. (1995). Analysis of large dislocation populations in deformed metals. Physica Status Solidi A-Applied Research, 149(1), 155–172.

    Article  ADS  Google Scholar 

  4. Hughes, D.A. and Hansen, N. (1997). High angle boundaries formed by grain subdivision mechanisms. Acta Materialia, 45(9), 3871–3886.

    Article  Google Scholar 

  5. Hughes, D.A., Lui, A., Chrzan, D.C. and Hansen, N. (1997). Scaling of microstructural parameters: Misorientations of deformation induced boundaries. Acta Materialia, 45(1), 105–112.

    Article  Google Scholar 

  6. Hughes, D.A. and Nix, W.D. (1989). Strain hardening and substructural evolution in ni-co solid solutions at large strains. Materials Science and Engineering, A122(2), 153–172.

    Article  Google Scholar 

  7. Hughes, D.A. (2001). Deformation microstructures and selected examples of their recrystallization. Surface and Interface Analysis, 31(7), 560–570.

    Article  Google Scholar 

  8. Hughes, D.A., Chrzan, D.C., Liu, Q. and Hansen, N. (1998). Scaling of misorientation angle distributions. Physical Review Letters, 81(21), 4664–4667.

    Article  ADS  Google Scholar 

  9. Hughes, D.A. and Hansen, N. (1993). Microstructural evolution in nickel during rolling from intermediate to large strains. Metallurgical Transactions A-Physical Metallurgy and Materials Science, 24(9), 2021–2037.

    Article  ADS  Google Scholar 

  10. Hughes, D.A. and Hansen, N. (1995). High-angle boundaries and orientation distributions at large strains. Scripta Metallurgica et Materialia, 33(2), 315–321.

    Article  Google Scholar 

  11. Hughes, D.A. and Hansen, N. (1997). High angle boundaries formed by grain subdivision mechanisms. Acta Materialia, 45(9), 3871–3886.

    Article  Google Scholar 

  12. Hughes, D.A. and Hansen, N. (2000). Microstructure and strength of nickel at large strains. Acta Materialia, 48(11), 2985–3004.

    Article  Google Scholar 

  13. Hughes, D.A. and Hansen, N. (2001). Graded nanostructures produced by sliding and exhibiting universal behavior. Physical Review Letters, 8713(13), 5503&#x2014.

    Google Scholar 

  14. Hughes, D.A., Liu, Q., Chrzan, D.C. and Hansen, N. (1997). Scaling of microstructural parameters: Misorientations of deformation induced boundaries. Acta Materialia, 45(1), 105–112.

    Article  Google Scholar 

  15. Kohn, R. V (1991). The relaxation of a double-well energy. Continuum Mechanics and Thermodynamics, 3, 193–236.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Kohn, R.V. and Strang, G. (1986). Optimal design and relaxation of variational problems i, ii, iii. Communication on Pure and Applied Mathematics, 39, 193–236, 139–182, 353–377.

    Google Scholar 

  17. Lee, E.H. (1969). Elastic-plastic deformation at finite strains. Journal ofApplied Mechanics, 36(1).

    Google Scholar 

  18. Okabe, A., Boots, B. and Sugihara, K. (1992). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. John Wiley and Sons. (Chapter 4).

    MATH  Google Scholar 

  19. Ortiz, M. and Repetto, E.A. (1999). Nonconvex energy minimization and dislocation structures in ductile single crystals. Journal of the Mechanics and Physics of Solids, 47(2), 397–462.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Ortiz, M., Repetto, E.A. and Stainier, L. (2000). A theory of subgrain dislocation structures. Journal of the Mechanics and Physics of Solids, 48(10), 2077–2114.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Rice, J.R. (1975). Continuum mechanics and thermodynamics of plasticity in relation to microscale deformation mechanisms. In Argon A. (Ed.), editor, Constitutive Equations in Plasticity, 23–79. MIT press, Cambridge (Mass).

    Google Scholar 

  22. Zimmer, W.H., Hecker, S.S., Rohr, D.L. and Murr, L.E. (1983). Large strain plastic deformation of commercially pure nickel. Metal Science, 17(4), 198–206.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Aubry, S., Ortiz, M. (2003). Variational Methods in Non-Convex Plasticity. In: Miehe, C. (eds) IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains. Solid Mechanics and Its Applications, vol 108. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0297-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0297-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6239-0

  • Online ISBN: 978-94-017-0297-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics