Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 108))

Abstract

A thermodynamically admissible model of volumetric growth is presented which exploits the notion of material transplant or local structural rearrangement issued from the Epstein-Maugin theory of material inhomogeneities. The driving force appears to be the Mandel stress (a part of the Eshelby stress tensor). Anisotropy of growth is characterized by a vector field slaved to the principal directions of that tensor. The model is very much like one of viscoelasticity in finite strains. It is applicable to self-organization or adaptation. The numerical solution of specific problems is based on a finite-element formulation obtained with reference to the total Lagrangian approach. The validity of the model is thus assessed in terms of circumferential (monotomic) growth/resorption behavior, stress induction in a ring, and the dynamical effect (repeated alternate loading) on the material growth in a cantilever beam. The model proves to possess a sufficiently rich potential for a further comprehensive description of growth/adaptation phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arutyunyan, N.Kh., Drozdov, A.D. and Naumov, V.E. (1985). Mechanics of Growing Viscoelastic-plastic Solids, (in Russian), Nauka, Moscow.

    Google Scholar 

  2. Cleja-Tigoiu, S. and Maugin, G.A. (2000). Eshelby’s Stress Tensors in Finite Elastoplasticity. Acta Mechanica, 139, 231–249.

    Article  MATH  Google Scholar 

  3. Cowin, S.C., Sadegh, A.M. and Luo, G.M. (1992). An Evolutionary Wolff’s Law for Trabecular Architecture. ASME J. Biomech. Engng., 114, 129–136.

    Article  Google Scholar 

  4. Epstein, M. and Maugin, G.A. (1990). The Energy-momentum Tensor and Material Uniformity in Finite Elasticity. Acta Mechanica, 83, 127–133.

    Article  MATH  MathSciNet  Google Scholar 

  5. Epstein, M. and Maugin, G.A. (1995). On the Geometrical Structure of Anelasticity. Acta Mechanica, 115, 119–131.

    Article  MathSciNet  Google Scholar 

  6. Epstein, M. and Maugin, G.A. (1997) Notions of Material Uniformity and Homogeneity (ICTAM’96, Kyoto), T. Tatsumi et al. (eds.), Elsevier, Amsterdam, 201–215.

    Google Scholar 

  7. Epstein, M. and Maugin, G.A. (2000). Thermomechanics of Volumetric Growth in Uniform Bodies. Int. J. Plasticity, 16, 951–978.

    Article  MATH  Google Scholar 

  8. Fung, Y.C, Liu, S.Q. and Zhou, J.B. (1993). Remodeling the Constitutive Equation While a Blood Vessel Remodels itself under Stress. ASME J. Biomech. Engng., 115, 453–459.

    Article  Google Scholar 

  9. Gurtin, M.E. (1993). The Dynamics of Solid-solid Phase Transitions.I. Coherent Interfaces. Arch. Rat. Mech. Anal., 123, 303–335.

    Article  MathSciNet  Google Scholar 

  10. Hart, R.T., Davy, D.T. and Heiple, K.G. (1984). A Computational Method for Stress Analysis of Adaptive Elastic Materials with a View Toward Applications in Strain-induced Bone Remodeling. ASME J. Biomech. Engng., 106, 342–350.

    Article  Google Scholar 

  11. Imatani, S. and Maugin, G.A. (2001). A Constitutive Model for Growing Materials and its Applications to Finite-element Analysis. Trans. ASME J. Appl. Mech., submitted.

    Google Scholar 

  12. Kuehn, S. and Hauger, W. (2000). A Theory of Adaptive Growth of Biological Materials. Arch. Appl. Mech., 70, 183–192.

    Article  ADS  MATH  Google Scholar 

  13. Lubliner, J. (1990). Plasticity Theory, McMillan, New York.

    MATH  Google Scholar 

  14. Maugin, G.A. (1992). Thermomechanics of Plasticity and Fracture, Cambridge University Press, U.K.

    Book  MATH  Google Scholar 

  15. Maugin, G.A. (1993). Material Inhomogeneities in Elasticity, Chapman and Hall, London.

    MATH  Google Scholar 

  16. Maugin, G.A. (1994). Eshelby Stress in Elastoplasticity and Fracture. Int. J. Plasticity, 10, 393–408.

    Article  MATH  Google Scholar 

  17. Maugin, G.A. (1995). Material Forces: Concepts and Applications. ASME Appl. Mech. Rev. , 48, 213–245.

    Article  ADS  MathSciNet  Google Scholar 

  18. Maugin, G.A. (1999). Thermomechanics of Nonlinear Irreversible Behaviors. World Scientific, Singapore and River Edge, N.J.

    MATH  Google Scholar 

  19. Maugin, G.A. (2000). On the Universality of the Thermomechanics Forces Driving Singular Sets. Arch. Appl. Mech., 70, 31–45.

    Article  ADS  MATH  Google Scholar 

  20. Rodriguez, E.K., Hoger, A. and McCullogh, A.D. (1994). Stress-dependent Finite Growth in Soft Elastic Tissues. J. Biomechanics, 27, 455–467.

    Article  Google Scholar 

  21. Simo, J.C. (1988). A Framework for Finite Strain Elastoplasticity Based on Maximum Dissipation and the Multiplicative Decomposition, Parts 1 and 2. Comp. Methods Appl. Mech. Eng., 66, 199–219, 68, 1–31.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Taber, L.A. (1995). Biomechanics of Growth, Remodeling and Morphogenesis. ASME Appl. Mech. Rev. , 48, 487–545.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Maugin, G.A., Imatani, S. (2003). Material Growth in Solid-Like Materials. In: Miehe, C. (eds) IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains. Solid Mechanics and Its Applications, vol 108. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0297-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0297-3_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6239-0

  • Online ISBN: 978-94-017-0297-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics