Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 108))

Abstract

Abstract: A rotationally invariant function f defined on the set Mn × n of all real square matrices of order n has a representation f on ℝn through the signed singular values of the matrix argument A ∊ Mn×n Using necessary and sufficient conditions for the rank 1 convexity of f in terms of f, three iterative procedures are derived to construct the rank 1 convex hull of f.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball, J.M. (1977). Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal., 63, 337–403.

    Article  MATH  Google Scholar 

  2. Ball, J.M. and James, R.D. (1987). Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal., 100, 13–52.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Ball, J.M. and James, R.D. (1993). Proposed experimental tests of a theory of fine microstructure and the two-well problem. Phil. Trans. Royal Soc. Lond. 338, 389–450.

    ADS  Google Scholar 

  4. Bladon, P., Terentjev, E.M. and Warner, M. (1993). Transitions and instabilities in liquidcrystal elastomers. Phys. Rev. E 47, R3838–R3840.

    ADS  Google Scholar 

  5. Chipot, M. and Kinderlehrer, D. (1988). Equilibrium configurations of crystals. Arch. Rational Mech. Anal. 103, 237–277.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Dacorogna, B. (1990). Direct methods in the calculus of variations, Springer, Berlin.

    Google Scholar 

  7. DeSimone, A. and Dolzmann, G. (2001). Macroscopic response of nematic elastomers via relaxation of a class of SO(3)-invariant energies. Preprint No. 41 Max-Planck Institute, Leipzig.

    Google Scholar 

  8. Kohn, R.V. and Strang, G. (1986). Optimal design and relaxation of variational problems, I, II, III. Comm. Pure Appl. Math., 39, 113–137, 139–182, 353–377.

    Article  MATH  MathSciNet  Google Scholar 

  9. Le Dret, H. and Raoult, A. (1994). Envelope quasi-convexe de la densité d’énergie de Saint Venant-Kirchhoff. C. R. Acad. Sci. Paris, 318, 93–98.

    MATH  Google Scholar 

  10. Le Dret, H. and Raoult, A. (1995). The quasiconvex envelope of the Saint Venant-Kirchhoff stored energy function. Proc. Royal Soc. Edinburgh, 125A, 1179–1192.

    Article  MathSciNet  Google Scholar 

  11. Morrey Jr., C.B. (1966). Multiple integrals in the calculus of variations, Springer, New York.

    MATH  Google Scholar 

  12. Müller, S. (1999). Variational models for microstructure and phase transitions. In Calculus of variations and geometric evolution problems (Cetraro, 1996) Lecture notes in Math. 1713, Berlin, Springer, 85–210.

    Chapter  Google Scholar 

  13. Pedregal, P. (1997). Parameterized measures and variational principles, Birkhäuser, Basel.

    Book  Google Scholar 

  14. Rosakis, P. (1997). Characterization of convex isotropic functions. J. Elasticity, 49, 257–267.

    Article  MathSciNet  Google Scholar 

  15. Roubíéek, T. (1997). Relaxation in optimization theory and variational calculus, W. de Gruyter, Berlin.

    Book  Google Scholar 

  16. Silhavý, M. (1997). The mechanics and thermodynamics of continuous media, Springer, Berlin.

    MATH  Google Scholar 

  17. Silhavý, M. (1999). Convexity conditions for rotationally invariant functions in two dimensions. In Applied Nonlinear Analysis, A. Sequeira et al. (ed.), Kluwer Academic, New York, 513–530.

    Google Scholar 

  18. Silhavý, M. (1999). On isotropic rank 1 convex functions. Roy Soc. Edinburgh, 129A, 1081–1105.

    Article  Google Scholar 

  19. Silhavý, M. (2001). Rotationally invariant rank 1 convex functions. Applied Mathematics & Optimization, 44, 1–15.

    Article  MATH  Google Scholar 

  20. Silhavý, M. (2001). Rank 1 Convex hulls of isotropic functions in dimension 2 by 2. Mathematica Bohemica, 126, 521–529.

    MATH  MathSciNet  Google Scholar 

  21. Silhavý, M. (2001). Monotonicity of rotationally invariant convex and rank 1 convex functions. Proc. Royal Soc. Edinburgh. To appear.

    Google Scholar 

  22. Silhavý, M. (2001). On the semiconvexity properties of rotationally invariant functions in two dimensions. To be published.

    Google Scholar 

  23. Silhavý, M. (2001). Relaxation in a class of SO (n)-invariant energies related to nematic elastomers. To be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

šilhavý, M. (2003). Rank 1 Convex Hulls of SO(n)-Invariant Functions. In: Miehe, C. (eds) IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains. Solid Mechanics and Its Applications, vol 108. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0297-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0297-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6239-0

  • Online ISBN: 978-94-017-0297-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics