Skip to main content

Sulphate Assimilation: A Pathway Which Likes to Surprise

  • Chapter
Sulphur in Plants

Abstract

Sulphate assimilation is a pathway used by prokaryotes, fungi and photosynthetic organisms to convert inorganic sulphates to sulphide, which is incorporated into carbon skeletons of amino acids to form cysteine or homocysteine. Our knowledge about the molecular mechanisms and regulation of sulphate assimilation lags behind that of assimilation of carbon and nitrogen. Nevertheless, during the last few years considerable progress has been made in understanding its assimilation. Many of the new findings, however, are rather unexpected and do not fit into the previously established view of this pathway; (a) A detailed biochemical analysis seems to resolve the old question of reduction via bound or free sulphite and the controversy about the reaction mechanism of the enzyme catalyzing APS reduction. The surprising finding of an iron-sulphur cluster bound to the enzyme clearly supports a reductase mechanism and, thus, APS reductase is the correct name for this enzyme. Correspondingly, free sulphite is the reaction product and the bound intermediates are most probably the result of chemical reaction of sulphite with oxidized thiols; (b) Attempts to solve the significance of bundle sheath cell specific distribution of sulphate assimilation in C4 plants failed since the pathway was detected in all cell types in Flaveria trinervia, a C4 dicot plant. (c) A novel type of APS reductase was found in various heterotrophic bacteria, which were believed to require the two step activation of sulphate to PAPS for sulphate reduction. More surprising and unpredicted results can be expected in the near future. This represents quite a challenge and makes the sulphur metabolism an exceptionally exciting field for further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abola AP, Willits MG, Wang RC and Long SR (1999) Reduction of adenosine-5 ’-phosphosulfate instead of 3 ’-phosphoadenosine-5 ’-phosphosulfate in cysteine biosynthesis by Rhizobium meliloti and other members of the family Rhizobiaceae. J Bacteriol 181: 5280–5287

    CAS  Google Scholar 

  • Baudouin-Comu P, Surdin-Kerjan Y, Marliere P and Thomas D (2001) Molecular evolution of protein atomic composition. Science 293: 297–300

    Article  Google Scholar 

  • Bick JA, Aslund F, Chen Y and Leustek T (1998) Glutaredoxin function for the carboxyl-terminal domain of the plant-type 5’-adenylylsulfate reductase. Proc Nall Acad Sci USA 95: 8404–8409

    Article  CAS  Google Scholar 

  • Bick JA, Dennis JJ, Zylstra GJ, Nowack J and Leustek T (2000) Identification of a new class of 5 ’-adenylylsulfate (APS) reductases from sulfate-assimilating bacteria. J Bacteriol 182: 135–142

    Article  PubMed  CAS  Google Scholar 

  • Bick JA, Setterdahl AT, Knaff DB, Chen Y, Pitcher LH, Zilinskas BA and Leustek T (2001) Regulation of the plant-type 5’-adenylyl sulfate reductase by oxidative stress. Biochemistry 40: 9040–9048

    Article  PubMed  CAS  Google Scholar 

  • Blaszczyk A, Brodzik R and Sirko A (1999) Increased resistance to oxidative stress in transgenic tobacco plants overexpressing bacterial serine acetyltransferase. Plant J 20: 237–243

    Article  PubMed  CAS  Google Scholar 

  • Bogdanova N and Hell R (1997) Cysteine synthesis in plants: Protein-protein interactions of serine acetyltransferase from Arabidopsis thaliana. Plant J 11: 251–262

    CAS  Google Scholar 

  • Bolchi A, Petrucco S, Tenca PL, Foroni C and Ottonello S (1999) Coordinate modulation of maize sulfate permesse and ATP sulfurylase mRNAs in response to variations in sulfur nutritional status: stereospecific down-regulation by L-cysteine. Plant Mol Biol 39: 527–537

    Article  PubMed  CAS  Google Scholar 

  • Bork C, Schwenn JD and Hell R (1998) Isolation and characterization of a gene for assimilatory sulfite reductase from Arabidopsis thaliana. Gene 212: 147–153

    Article  PubMed  CAS  Google Scholar 

  • Brilhl A, Haverkamp T, Gisselmann G and Schwenn JD (1996) A cDNA clone from Arabidopsis thaliana encoding plastidic ferredoxin:sulfite reductase. Biochim Biophys Acta 1295: 119–124

    Article  Google Scholar 

  • Brunner M, Kocsy G, Ruegsegger A, Schmutz D and Brunold C (1995) Effect of chilling on assimilatory sulfate reduction and glutathione synthesis in maize. J Plant Physiol 146: 743–747

    Article  CAS  Google Scholar 

  • Brunold C (1990) Reduction of sulfate to sulfide. In: Rennenberg H, Brunold C, De Kok LJ, Stulen I (eds) Sulphur Nutrition and Sulphur Assimilation in Higher Plants, pp 13–31. SPB Academic Publishing, The Hague

    Google Scholar 

  • Brunold C (1993) Regulatory interactions between sulfate and nitrate assimilation. In: De Kok LJ, Stulen I, Rennenberg H, Brunold C and Rauser WE (eds) Sulfur Nutrition and Sulfur Assimilation in Higher Plants, pp 61–75. SPB Academic Publishing, The Hague

    Google Scholar 

  • Brunold C and Suter M (1982) Intracellular localization of serine acetyltransferase in spinach leaves. Planta 155: 321–327

    Article  CAS  Google Scholar 

  • Brunold C and Suter M (1984) Regulation of sulfate assimilation by nitrogen nutrition in the duckweed Lemna minor L. Plant Physiol 76: 579–583

    Article  PubMed  CAS  Google Scholar 

  • Brunold C and Suter M (1989) Localization of enzymes of assimilatory sulfate reduction in pea roots. Planta 179: 228–234

    Article  CAS  Google Scholar 

  • Brunold C and Suter M (1990) Adenosine 5’-phosphosulfate sulfotransferase. In: Lea P (ed), Methods in Plant Biochemistry, Vol. 3, pp 339–343. Academic Press, London

    Google Scholar 

  • Brunold C, Landolt W and Lavanchy P (1983) SO2 and assimilatory sulfate reduction in beech leaves. Physiol Plant 59: 313–318

    Article  CAS  Google Scholar 

  • Brunold C, Suter M and Lavanchy P (1987) Effect of high and low sulphate concentrations on adenosine 5’-phosphosulphate sulfotransferase activity from Lemna minor L. Physiol Plant 70: 168–174

    Article  CAS  Google Scholar 

  • Burandt P, Papenbrock J, Schmidt A, Bloem E, Haneklaus S and Schnug E (2001a) Genotypical differences in total sulfur contents and cysteine desulfhydrase activities in Brassica napus L. Phyton 41: 75–85

    CAS  Google Scholar 

  • Burandt P, Schmidt A and Papenbrock J (2001b) Cysteine synthesis and cysteine desulfuration in Arabidopsis plants at different developmental stages and light conditions. Plant Physiol Biochem 39: 861–870

    Article  CAS  Google Scholar 

  • Burnell JN (1984) Sulfate assimilation in C4 plants. Plant Physiol 75: 873–875

    Article  PubMed  CAS  Google Scholar 

  • Chen Y and Leustek T (1998) Three genomic clones from Arabidopsis thaliana encoding 5’-adeylylsulfate reductase (Acc. Nos. AF016282, AF016283, and AF016284). Plant Physiol 116: 869

    Article  Google Scholar 

  • Crane BR, Siegel LM and Getzoff ED (1995) Sulfite reductase structure at 1.6 A: evolution and catalysis for reduction of inorganic anions. Science 270: 59–67

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, Mackerness SA-H, Hancock JT and Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127: 159–172

    Article  PubMed  CAS  Google Scholar 

  • Dominguez-Solis JR, Gutierrez-Alcala G, Vega JM, Romero LC and Gotor C (2001) The cytosolic Oacetylserine(thiol)lyase gene is regulated by heavy metals and can function in cadmium tolerance. J Biol Chem 276: 9297–9302

    Article  PubMed  CAS  Google Scholar 

  • Droux M, Ruffet ML, Douce R and Job D (1998) Interactions between serine acetyltransferase and Oacetylserine (thiol)lyase in higher plants–structural and kinetic properties of the free and bound enzymes. Eur J Biochem 255: 235–245

    Article  PubMed  CAS  Google Scholar 

  • Edwards R, Dixon DP and Walbot V (2000) Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci 5: 193–198

    Article  PubMed  CAS  Google Scholar 

  • Fankhauser H and Brunold C (1978) Localization of adenosine 5’-phosphosulfate sulfotransferase in spinach leaves. Planta 143: 285–289

    Article  CAS  Google Scholar 

  • Farago S, Brunold C and Kreuz K (1994) Herbicide safeners and glutathione metabolism. Physiol Plant 91: 537–542

    Article  CAS  Google Scholar 

  • Farago S and Brunold C (1990) Regulation of assimilatory sulfate reduction by herbicide safeners in Zea mays L. Plant Physiol 94: 1808–1812

    Article  PubMed  CAS  Google Scholar 

  • Flockiger H, Jecklin S, von Ballmoos P, Suter M and Brunold C (2000) Effect of hydrogen peroxide induced oxidative stress in maize roots. In: Brunold C, Rennenberg H, De Kok LI, Stulen I, Davidian JC (eds) Sulphur Nutrition and Sulphur Assimilation in Higher Plants: Molecular, Biochemical and Physiological Aspects, pp 401–403. Paul Haupt, Bern

    Google Scholar 

  • Fritz G, Buchert T, Huber H, Stater KO and Kroneck PM (2000) Adenylylsulfate reductases from archaea and bacteria are I: 1 a13-heterodimeric iron-sulfur flavoenzymes–high similarity of molecular properties emphasizes their central role in sulfur metabolism. FEBS Lett 473: 63–66

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Schofield OM and Leustek T (2000) Characterization of sulfate assimilation in marine algae focusing on the enzyme 5 ’-adenylylsulfate reductase. Plant Physiol 123: 1087–1096

    Article  PubMed  CAS  Google Scholar 

  • Gerwick BC, Ku SB and Black CC (1980) Initiation of sulfate activation: a variation in C4 photosynthesis plants. Science 209: 513–515

    Article  PubMed  CAS  Google Scholar 

  • Gullner G, Kömives T and Rennenberg H (2001) Enhanced tolerance of transgenic poplar plants overexpressing y-glutamylcysteine synthetase towards chloroacetanilide herbicides. J Exp Bot 52: 971–979

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Alcala G, Gotor C, Meyer AJ, Frisker M, Vega JM and Romero LC (2000) Glutathione biosynthesis in Arabidopsis trichome cells. Proc Natl Acad Sci USA 97: 11108–11113

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Marcos JF, Roberts MA, Campbell EI and Wray JL (1996) Three members of a novel small gene-family from Arabidopsis thaliana able to complement functionally an Escherichia coli mutant defective in PAPS reductase activity encode proteins with a thioredoxin-like domain and “APS reductase” activity. Proc Natl Acad Sci USA 93: 13377–13382

    Article  PubMed  CAS  Google Scholar 

  • Harada E, Kusano T and Sano H (2000) Differential expression of genes encoding enzymes involved in sulfur assimilation pathways in response to wounding and jasmonate in Arabidopsis thaliana. J Plant Physiol 156: 272–276

    Article  CAS  Google Scholar 

  • Harms K, von Ballmoos P, Brunold C, Hofgen R and Hesse H (2000) Expression of a bacterial serine acetyltransferase in transgenic potato plants leads to increased levels of cysteine and glutathione. Plant J 22: 335–343

    Article  PubMed  CAS  Google Scholar 

  • Hartmann T, Mult S, Suter M, Rennenberg H and Herschbach C (2000) Leaf age-dependent differences in sulphur assimilation and allocation in poplar (Populus tremula x P. alba) leaves. J Exp Bot 51: 1077–1088

    Article  PubMed  CAS  Google Scholar 

  • Hatzfeld Y, Lee S, Lee M, Leustek T and Saito K (2000a) Functional characterization of a gene encoding a fourth ATP sulfurylase isoform from Arabidopsis thaliana. Gene 248: 51–58

    Article  PubMed  CAS  Google Scholar 

  • Hatzfeld Y, Maruyama A, Schmidt A, Noji M, Ishizawa K and Saito K, (2000b) beta-cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in spinach and Arabidopsis. Plant Physiol 123: 1163–1171

    Google Scholar 

  • Hawkesford MJ and Wray JL (2000) Molecular genetics of sulphate assimilation. Adv Bot Res 33: 159–223

    Article  CAS  Google Scholar 

  • Heiss S, Schafer HJ, Haag-Kerwer A and Rausch T (1999) Cloning sulfur assimilation genes of Brassica juncea L.: cadmium differentially affects the expression of a putative low-affinity sulfate transporter and isoforms of ATP sulfurylase and APS reductase. Plant Mol Biol 39: 847–857

    Article  PubMed  CAS  Google Scholar 

  • Hell R (1997) Molecular physiology of plant sulfur metabolism. Planta 202: 138–148

    Article  PubMed  CAS  Google Scholar 

  • Hell R, Schwenn JD and Bork C (1997) Light and sulfur sources modulate mRNA levels of several genes of sulfate assimilation. In: Cram WJ, De Kok LJ, Stulen I, Brunold C and Rennenberg H (eds) Sulfur Metabolism in Higher Plants, pp 181–185. Backhuys Publishers, Leiden

    Google Scholar 

  • Höfgen R, Kreft O, Willmitzer L and Hesse H (2001) Manipulation of thiol contents in plants. Amino Acids 20: 291–299

    Article  PubMed  Google Scholar 

  • Jecklin S (1997) Effect of oxidative stress on assimilatory sulfate reduction in maize (Zea mays L.) roots. Diploma work, University of Bern

    Google Scholar 

  • Jones-Mortimer MC (1968) Positive control of sulphate reduction in Escherichia coli. Biochem J 110: 589–595

    PubMed  CAS  Google Scholar 

  • Jost R, Berkowitz O, Wirtz M, Hopkins L, Hawkesford MJ and Hell R (2000) Genomic and functional characterization of the oas gene family encoding 0-acetylserine (thiol) lyases, enzymes catalyzing the final step in cysteine biosynthesis in Arabidopsis thaliana. Gene 253: 237–247

    Article  PubMed  CAS  Google Scholar 

  • Kappler U and Dahl C (2001) Enzymology and molecular biology of prokaryotic sulfite oxidation. FEMS Microbiol Lett 203: 1–9

    PubMed  CAS  Google Scholar 

  • Kim H, Hirai MY, Hayashi H, Chino M, Naito S and Fujiwara T (1999) Role of O-acetyl-l-serine in the coordinated regulation of the expression of a soybean seed storage-protein gene by sulfur and nitrogen nutrition. Planta 209: 282–289

    Article  PubMed  CAS  Google Scholar 

  • Klonus D, Hofgen R, Willmitzer L and Riesmeier JW (1994) Isolation and characterization of two cDNA clones encoding ATP-sulfurylases from potato by complementation of a yeast mutant. Plant J 6: 105–112

    Article  PubMed  CAS  Google Scholar 

  • Kocsy G, Owttrim G, Brander K and Brunold C (1997) Effect of chilling on the diurnal rhythm of enzymes involved in protection against oxidative stress in a chilling-tolerant and a chilling-sensitive maize genotype. Physiol Plant 99: 249–254

    Article  CAS  Google Scholar 

  • Kopriva S, Büchert T, Fritz G, Suter M, Weber M, Benda R, Schaller J, Feller U, Schürmann P, Schünemann V, Trautwein AX, Kroneck PM and Brunold C (2001a) Plant adenosine 5’phosphosulfate reductase is a novel iron-sulfur protein. J Biol Chem 276: 42881–42886

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S, Jones S, Koprivova A, Suter M, von Ballmoos P, Brander K, Flockiger J and Brunold C (2001b) Influence of chilling stress on the intercellular distribution of assimilatory sulfate reduction and thiols in Zea mays. Plant Biol 3: 24–31

    Article  CAS  Google Scholar 

  • Kopriva S, Muheim R, Koprivova A, Trachsler N, Catalano C, Suter M and Brunold C (1999) Light regulation of assimilatory sulfate reduction in Arabidopsis thaliana. Plant J 20: 37–44

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S, Büchert T, Fritz G, Suter M, Benda R, Schünemann V, Koprivova A, Schürmann P, Trautwein AX, Kroneck PMH and Brunold C (2002) The presence of an iron-sulfur cluster in adenosine 5’-phosphosulfate reductase separates organisms utilizing adenosine 5’-phosphosulfate and phosphoadenosine 5’-phosphosulfate for sulfate assimilation. J Biol Chem 277: 21786–21791

    Article  PubMed  CAS  Google Scholar 

  • Koprivova A, Suter M, Op den Camp R, Brunold C and Kopriva S (2000) Regulation of sulfate assimilation by nitrogen in Arabidopsis. Plant Physiol 122: 737–746

    Article  PubMed  CAS  Google Scholar 

  • Koprivova A, Melzer M, von Ballmoos P, Mandel T, Brunold C and Kopriva S (2001) Assimilatory sulfate reduction in C3, C3–C4, and C4 species of Flaveria. Plant Physiol 127: 543–550

    Article  PubMed  CAS  Google Scholar 

  • Kredich NM (1971) Regulation of L-cysteine biosynthesis in Salmonella typhimurium. J Biol Chem 246: 3474–3484

    PubMed  CAS  Google Scholar 

  • Kredich NM and Tomkins GM (1966) The enzymatic synthesis of L-cysteine in Escherichia coli and Salmonella typhimurium. J Biol Chem 244: 4955–4965

    Google Scholar 

  • Krueger RJ and Siegel LM (1982) Spinach siroheme enzymes: Isolation and characterization of ferredoxin-sulfite reductase and comparison of properties with ferredoxin-nitrite reductase. Biochemistry 21: 2892–2904

    Article  PubMed  CAS  Google Scholar 

  • Ku MSB, Wu JR, Dai ZY, Scott RA, Chu C and Edwards GE (1991) Photosynthetic and photorespiratory characteristics of Flaveria species. Plant Physiol 96: 518–528

    Article  PubMed  CAS  Google Scholar 

  • Kurima K, Warman ML, Krishnan S, Domowicz M, Krueger Jr RC, Deyrup A and Schwartz NB (1998) A member of a family of sulfate-activating enzymes causes murine brachymorphism. Proc Nall Acad Sci USA 95: 8681–8685

    Article  CAS  Google Scholar 

  • Lappartient AG and Touraine B (1996) Demand-driven control of root ATP sulphurylase activity and SO42+ uptake in intact canola. Role of phloem-translocated glutathione. Plant Physiol 111: 147–157

    PubMed  CAS  Google Scholar 

  • Lappartient AG, Vidmar JJ, Leustek T, Glass ADM and Touraine B (1999) Inter-organ signaling in plants: regulation of ATP sulphurylase and sulphate transporter genes expression in roots mediated by phloem-translocated compound. Plant J 18: 89–95

    Article  PubMed  CAS  Google Scholar 

  • Lee S and Leustek T (1998) APS kinase from Arabidopsis thaliana: Genomic organization, expression, and kinetic analysis of the recombinant enzyme. Biochem Biophys Res Commun 247: 171–175

    Article  PubMed  CAS  Google Scholar 

  • Lee S and Leustek T (1999) The effect of cadmium on sulfate assimilation enzymes in Brassica juncea. Plant Sci 141: 201–207

    Article  CAS  Google Scholar 

  • Leustek T and Saito K (1999) Sulfate transport and assimilation in plants. Plant Physiol 120: 637–644

    Article  PubMed  CAS  Google Scholar 

  • Leustek T, Martin MN, Bick JA and Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Bio 51: 141–165

    Article  CAS  Google Scholar 

  • Leyh TS, Taylor JC and Markham GD (1988) The sulfate activation locus of Escherichia coli K12: cloning, genetic, and enzymatic characterization. J Biol Chem 263: 2409–2416

    PubMed  CAS  Google Scholar 

  • Li JJ, Saidha T and Schiff JA (1991) Purification and properties of two forms of ATP sulfurylase from Euglena. Biochim Biophys Acta 1078: 68–76

    Article  PubMed  CAS  Google Scholar 

  • Logan HM, Cathala N, Grignon C and Davidian JC (1996) Cloning of a cDNA encoded by a member of the Arabidopsis thaliana ATP sulfurylase multigene family. Expression studies in yeast and in relation to plant sulfur nutrition. J Biol Chem 271: 12227–12233

    Article  PubMed  CAS  Google Scholar 

  • Lunn J, Droux M, Martin J and Douce R (1990) Localization of ATP sulfurylase and 0-acetylserine (thiol)lyase in spinach leaves. Plant Physiol 94: 1345–1352

    Article  PubMed  CAS  Google Scholar 

  • Lyle S, Ozeran JD, Stanczak J, Westley J and Schwartz NB (1994) Intermediate channeling between ATP sulfurylase and adenosine 5’-phosphosulfate kinase from rat chondrosarcoma. Biochemistry 33: 6822–6827

    Article  PubMed  CAS  Google Scholar 

  • MacRae IJ, Segel IH and Fisher AJ (2000) Crystal structure of adenosine 5’-phosphosulfate kinase from Penicillium chrysogenum. Biochemistry 39: 1613–1621

    Article  PubMed  CAS  Google Scholar 

  • MacRae IJ, Segel IH and Fisher AJ (2001) Crystal structure of ATP sulfurylase from Penicillium chrysogenum: insights into the allosteric regulation of sulfate assimilation. Biochem 40: 6795–6804

    Article  CAS  Google Scholar 

  • Maruyama A, Ishizawa K and Takagi T (2000) Purification and characterization of beta-cyanoalanine synthase and cysteine synthases from potato tubers: Are beta-cyanoalanine synthase and mitochondrial cysteine synthase same enzyme? Plant Cell Physiol 41: 200–208

    Article  PubMed  CAS  Google Scholar 

  • May MJ, Vernoux T, Leaver C, van Montagu M and Inzé D (1998) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49: 649–667

    CAS  Google Scholar 

  • Monson RK and Moore BD (1989) On the significance of C3–C4 intermediate photosynthesis to the evolution of C4 photosynthesis. Plant Cell Environ 12: 689–699

    Article  CAS  Google Scholar 

  • Murillo M and Leustek T (1995) Adenosine-5’-triphosphate-sulfurylase from Arabidopsis thaliana and Escherichia coli are functionally equivalent but structurally and kinetically divergent: nucleotide sequence of two adenosine-5’-triphosphate-sulfurylase cDNAs from Arabidopsis thaliana and analysis of a recombinant enzyme. Arch Biochem Biophys 323: 195–204

    Google Scholar 

  • Neuenschwander U, Suter M and Brunold C (1991) Regulation of sulfate assimilation by light and Oacetyl-L-serine in Lemna minor L. Plant Physiol 97: 253–258

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Arisi A-CM, Jouanin L, Kunert KJ, Rennenberg H and Foyer CH (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49: 623–647

    CAS  Google Scholar 

  • Noji M, Inoue K, Kimura N, Gouda A and Saito K (1998) Isoform-dependent differences in feedback regulation and subcellular localization of serine acetyltransferase involved in cysteine biosynthesis from Arabidopsis thaliana. J Biol Chem 273: 32739–32745

    Article  PubMed  CAS  Google Scholar 

  • Noji M, Saito M, Nakamura M, Aono M, Saji H and Saito K (2001) Cysteine synthase overexpression in tobacco confers tolerance to sulfur containing environmental pollutants. Plant Physiol 126: 973–980

    Article  PubMed  CAS  Google Scholar 

  • Nussbaum S, Schmutz K and Brunold C (1988) Regulation of assimilatory sulfate reduction by cadmium in Zea mays L. Plant Physiol 88: 1407–1410

    Article  PubMed  CAS  Google Scholar 

  • Passera C and Ghisi R (1982) ATP sulphurylase and O-acetylserine sulphydrylase in isolated mesophyll protoplasts and bundle sheath strands of S-deprived maize leaves. J Exp Bot 33: 432–438

    Article  CAS  Google Scholar 

  • Passera C, Ghisi R and Ferretti M (1989) Light-activation of ATP-Sulfurylase in leaves and chloroplasts of Zea mays. Photosynthetica 23: 166–172

    CAS  Google Scholar 

  • Prior A, Uhrig JF, Heins L, Wiesmann A, Lillig CH, Stoltze C, Soll J and Schwenn JD (1999) Structural and kinetic properties of adenylyl sulfate reductase from Catharanthus roseus cell cultures. Biochim Biophys Acta 1430: 25–38

    Article  PubMed  CAS  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys 31: 19–48

    Article  PubMed  CAS  Google Scholar 

  • Rennenberg H (1983) Role of 0-acetylserine in hydrogen sulfide emission from pumpkin leaves in response to sulfate. Plant Physiol 73: 560–565

    Article  PubMed  CAS  Google Scholar 

  • Rennenberg H and Brunold C (1994) Significance of glutathione metabolism in plants under stress. Prog Bot 55: 142–156

    Article  CAS  Google Scholar 

  • Renosto F, Patel HC, Martin RI„ Thomassian C, Zimmerman G and Segel IH (1993) ATP sulfurylase from higher plants: kinetic and structural characterization of the chloroplast and cytosol enzymes from spinach leaf. Arch Biochem Biophys 307: 272–285

    Google Scholar 

  • Renosto F, Seubert PA and Segel IH. (1984) Adenosine 5’-phosphosulfate kinase from Penicillium chrysogenum. Purification and kinetic characterization. J Biol Chem 259: 2113–2123

    PubMed  CAS  Google Scholar 

  • Reuveny Z, Dougall DK and Trinity PM (1980) Regulatory coupling of nitrate and sulfate assimilation pathways in cultured tobacco cells. Proc Natl Acad Sci USA 77: 6670–6672

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal E and Leustek T (1995) A multifunctional Urechis caupo protein, PAPS synthetase, has both ATP sulfurylase and APS kinase activities. Gene 165: 243–248

    Article  PubMed  CAS  Google Scholar 

  • Rotte C and Leustek T (2000) Differential subcellular localization and expression of ATP sulfurylase and 5 ’-adenylylsulfate reductase during ontogenesis of Arabidopsis leaves indicates that cytosolic and plastid forms of ATP sulfurylase may have specialized functions. Plant Physiol 124: 715–724

    Article  PubMed  CAS  Google Scholar 

  • Rüegsegger A, Schmutz D and Brunold C (1990) Regulation of glutathione synthesis by cadmium in Pisum sativum L. Plant. Physiol 93: 1579–1584

    Article  PubMed  Google Scholar 

  • Saito K, Yokoyama H, Noji M and Murakoshi I (1995) Molecular cloning and characterization of a plant serine acetyltransferase playing a regulatory role in cysteine biosynthesis from watermelon. J Biol Chem 270: 16321–16326

    Article  PubMed  CAS  Google Scholar 

  • Satishchandran C and Markham GD (1989) Adenosine-5’-phosphosulfate kinase from Escherichia coli K12. Purification, characterization, and identification of a phosphorylated enzyme intermediate. J Biol Chem 264: 15012–15021

    PubMed  CAS  Google Scholar 

  • Sato N, Nakayama M and Hase T (2001) The 70-kDa major DNA-compacting protein of the chloroplast nucleoid is sulfite reductase. FEBS Lett 487: 347–350

    Article  PubMed  CAS  Google Scholar 

  • Schiff JA and Hodson RC (1970) Pathway of sulfate reduction in algae. Ann NY Acad Sci 175: 555–576

    Article  CAS  Google Scholar 

  • Schiffmann S and Schwenn JD (1998) Isolation of cDNA Clones Encoding Adenosine-5’-phosphosulfate (APS)-kinase EC: 2.7.1.25 from Catharanthus roseus (Accession No. AF044285) and an isoform (akn2) from Arabidopsis thaliana (Accession No. AF043351). Plant Physiol 117: 1125

    Article  Google Scholar 

  • Schmidt A (1972a) Ober Teilreaktionen der photosynthetischen Sulfatreduktion in zellfreien Systemen aus Spinatchloroplasten and Chlorella. Z Naturforsch 27b: 183–192

    CAS  Google Scholar 

  • Schmidt A (1972b) On the mechanism of photosynthetic sulfate reduction. An APS-sulfotransferase from Chlorella. Arch Microbiol 84: 77–86

    CAS  Google Scholar 

  • Schmidt A (1973) Sulfate reduction in a cell-free system of Chlorella. The ferredoxin dependent reduction of a protein-bound intermediate by a thiosulfonate reductase. Arch Microbial 93: 29–52

    CAS  Google Scholar 

  • Schmidt A (1976) The adenosine-5’-phosphosulfate sulfotransferase from spinach (Spinacea oleracea L.). Stabilization, partial purification and properties. Planta 130: 257–263

    Article  CAS  Google Scholar 

  • Schmidt A (1977) Assimilatory sulfate reduction via 3’-phosphoadenosine-5’-phosphosulfate (PAPS) and adenosine-5’-phosphosulfate (APS) in blue-green algae. FEMS Microbiol Leu 1: 137–140

    CAS  Google Scholar 

  • Schmidt A and Jager K (1992) Open questions about sulfur metabolism in plants. Annu Rev Plant Physiol Plant Mol Biol 43: 325–349

    Article  CAS  Google Scholar 

  • Schmidt A and Trebst A (1969) The mechanism of photosynthetic sulfate reduction by isolated chloroplasts. Biochim Biophys Acta 180: 529–535

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A and Trtlper HG (1977) Reduction of adenylylsulfate and 3’-phosphoadenylylsulfate in phototrophic bacteria. Experientia 33: 1008–1009

    Article  PubMed  CAS  Google Scholar 

  • Schmutz D and Brunold C (1984) Intercellular localization of assimilatory sulfate reduction in leaves of Zea mays and Triticum aestivum. Plant Physiol 74: 866–870

    Article  PubMed  CAS  Google Scholar 

  • Schmutz D and Brunold C (1985) Localization of nitrite and sulfite reductase in bundle sheath and mesophyll cells of maize leaves. Physiol Plant 64: 523–528

    Article  CAS  Google Scholar 

  • Schwenn JD (1989) Sulfate assimilation in higher plants: a thioredoxin-dependent PAPS-reductase from spinach leaves. Z Naturforsch 44c: 504–508

    CAS  Google Scholar 

  • Segel IH, Renosto F and Seubert PA (1987) Sulfate-activating enzymes. Methods Enzymol 143: 334–349

    Article  PubMed  CAS  Google Scholar 

  • Setya A, Murillo M and Leustek T (1996) Sulfate reduction in higher plants: Molecular evidence for a novel 5’-adenylsulfate reductase. Proc Natl Acad Sci USA 93: 13383–13388

    Article  PubMed  CAS  Google Scholar 

  • Smith IK (1980) Regulation of sulfate assimilation in tobacco cells: effect of nitrogen and sulfur nutrition on sulfate permease and O-acetylserine sulfhydrylase. Plant Physiol 66: 877–883

    Article  PubMed  CAS  Google Scholar 

  • Smith FW, Hawkesford MJ, Ealing PM, Clarkson DT, van den Berg PJ, Belcher AR and Warrilow AG (1997) Regulation of expression of a cDNA from barley roots encoding a high affinity sulphate transporter. Plant J 12: 875–884

    Article  PubMed  CAS  Google Scholar 

  • Sperling D, Kappler U, Wynen A, Dahl C and Truper HG (1998) Dissimilatory ATP sulfurylase from the hyperthermophilic sulfate reducer Archaeoglobus fulgidus belongs to the group of homo-oligomeric ATP sulfurylases. FEMS Microbiol Lett 162: 257–264

    Article  PubMed  CAS  Google Scholar 

  • Spielhofer P, Kopriva S, Taschler S, Oberer H, Suter M and Brunold C (2000) Stimulation of key enzymes in sulfate assimilation by safener CGA 173072 may induce higher protection against heavy metal stress in Zea mays L. In: Brunold C, Rennenberg H, De Kok LJ, Stulen I, Davidian JC (eds) Sulphur Nutrition and Sulphur Assimilation in Higher Plants: molecular, biochemical and physiological aspects, pp 387–388. Paul Haupt, Bern

    Google Scholar 

  • Suter M, Lavanchy P, von Arb C and Brunold C (1986) Regulation of sulfate assimilation by amino acids in Lemna minor L. Plant Sci 44: 125–132

    Article  CAS  Google Scholar 

  • Suter M, von Ballmoos P, Kopriva S, Op den Camp R, Schaller J, Kuhlemeier C, Schürmann P and Brunold C (2000) Adenosine 5’-phosphosulfate sulfotransferase and adenosine 5’-phosphosulfate reductase are identical enzymes. J Biol Chem 275: 930–936

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H and Saito K (1996) Subcellular localization of spinach cysteine synthase isoforms and regulation of their gene expression by nitrogen and sulfur. Plant Physiol 112: 273–280

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, de Almeida Engler J, Engler G, Van Montagu M and Saito K (1997) Regulation of sulfur assimilation in higher plants: A sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. Proc Natl Acad Sci USA 94: 11102–11107

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Yip WC and Tamura G. (1997) Purification and characterization of ferredoxin-sulfite reductase from turnip (Brassica raps) leaves and comparison of properties with ferredoxin-sulfite reductase from turnip roots. Biosci Biotechnol Biochem 61: 1486–1490

    Article  PubMed  CAS  Google Scholar 

  • Tsang ML-S and Schiff JA (1975) Studies of sulfate utilization by algae 14: Distribution of adenosine 5’phosphosulfate (APS) and adenosine 3’-phosphate 5’-phosphosulfate (PAPS) sulfotransferase in assimilatory sulfate reducers. Plant Sci. Lett 4: 301–307

    Article  CAS  Google Scholar 

  • Tsang ML, Goldschmidt EE and Schiff JA (1971) Adenosine-5’-phosphosulfate (APS3i) as an intermediate in the conversion of adenosine-3’-phosphate-5’-phosphosulfate (PAPS35) to acid volatile radioactivity. Plant Physiol 47: Suppl 20

    Google Scholar 

  • ul Haque MF, King LM, Krakow D, Cantor RM, Rusiniak ME, Swank RT, Superti-Furga A, Haque S, Abbas H, Ahmad W, Ahmad M and Cohn DH. (1998) Mutations in orthologous genes in human spondyloepimetaphyseal dysplasia and the brachymorphic mouse. Nat Genet 20: 157–162

    Article  PubMed  Google Scholar 

  • Ullrich TC, Blaesse M and Huber R (2001) Crystal structure of ATP sulfurylase from Saccharomyces cerevisiae, a key enzyme in sulfate activation. EMBO J 20: 316–329

    Article  PubMed  CAS  Google Scholar 

  • Vauclare P, Kopriva S, Fell D, Suter M, Sticher L, von Ballmoos P, Krähenbühl U, Op den Camp R and Brunold C (2002) Flux control of sulphate assimilation in Arabidopsis thaliana: Adenosine 5’phosphosulphate reductase is more susceptible to negative control by thiols than ATP sulphurylase. Plant J (in press)

    Google Scholar 

  • Varin L, Marsolais F, Richard M and Rouleau M (1997) Sulfation and sulfotransferases 6: Biochemistry and molecular biology of plant sulfotransferases. FASEB J 11: 517–525

    PubMed  CAS  Google Scholar 

  • Venkatachalam KV, Akita H and Strott CA (1998) Molecular cloning, expression, and characterization of human bifunctional 3’-phosphoadenosine 5’-phosphosulfate synthase and its functional domains. J Biol Chem 273: 19311–19320

    Article  PubMed  CAS  Google Scholar 

  • von Arb C and Brunold C (1986) Enzymes of assimilatory sulfate reduction in leaves of Pisum sativum: activity changes during ontogeny and in vivo regulation by H2S and cysteine. Physiol Plant 67: 81–86

    Article  Google Scholar 

  • Walker MA and McKersie BD (1993) Role of the ascorbate-glutathione antioxidant system in chilling resistance of tomato. J Plant Physiol 141: 234–239

    Article  CAS  Google Scholar 

  • Warrilow AGS and Hawkesford MJ (1998) Separation, subcellular location and influence of sulphur nutrition on isoforms of cysteine synthase in spinach. J Exp Bot 49: 1625–1636

    CAS  Google Scholar 

  • Warrilow AGS and Hawkesford MJ (2000) Cysteine synthase (0-acetylserine (thiol) lyase) substrate specificities classify the mitochondria) isoform as a cyanoalanine synthase. J Exp Bot 51: 985–993

    Article  PubMed  CAS  Google Scholar 

  • Washburn MP and Wells WW (1999) The catalytic mechanism of the glutathione-dependent dehydroascorbate reductase activity of thioltransferase (glutaredoxin). Biochemistry 38: 268–274

    Article  PubMed  CAS  Google Scholar 

  • Weber M, Suter M, Brunold C and Kopriva S (2000) Sulfate assimilation in higher plants: Characterization of a stable intermediate in the adenosine 5’-phosphosulfate reductase reaction. Eur J Biochem 267: 3647–3653

    Article  PubMed  CAS  Google Scholar 

  • Westerman S, Stulen I, Suter M, Brunold C and De Kok LJ (2001) Atmospheric H2S as sulphur source for Brassica oleracea: Consequences for the activity of the enzymes of the assimilatory sulphate reduction pathway. Plant Physiol Biochem 39: 425–432

    Article  CAS  Google Scholar 

  • Wirtz M, Berkowitz O, Droux M and Hell R (2001) The cysteine synthase complex from plants. Mitochondrial serine acetyltransferase from Arabidopsis thaliana carries a bifunctional domain for catalysis and protein-protein interaction. Eur J Biochem 268: 686–693

    Article  PubMed  CAS  Google Scholar 

  • Wray IL, Campbell EI, Roberts MA and Gutierrez-Marcos JF (1998) Redefining reductive sulfate assimilation in higher plants: a role for APS reductase, a new member of the thioredoxin superfamily? Chem Biol Interact 109: 153–167

    Article  PubMed  CAS  Google Scholar 

  • Wyss H-R and Brunold C (1980) Regulation of adenosine 5’-phosphosulfate sulfotransferase by sulfur dioxide in primary leaves of beans (Phaseolus vulgaris). Physiol Plant 50: 161–165

    Article  CAS  Google Scholar 

  • Yamaguchi Y, Nakamura T, Harada E, Koizumi N and Sano H (1999) Differential accumulation of transcripts encoding sulfur assimilation enzymes upon sulfur and/or nitrogen deprivation in Arabidopsis thaliana. Biosci Biotechnol Biochem 63: 762–766

    Article  PubMed  CAS  Google Scholar 

  • Yonekura-Sakakibara K, Ashikari T, Tanaka Y, Kusumi T and Hase T. (1998) Molecular characterization of tobacco sulfite reductase: enzyme purification, gene cloning, and gene expression analysis. J Biochem 124: 615–621

    Article  PubMed  CAS  Google Scholar 

  • Yonekura-Sakakibara K, Onda Y, Ashikari T, Tanaka Y, Kusumi T and Hase T (2000) Analysis of reductant supply systems for ferredoxin-dependent sulfite reductase in photosynthetic and nonphotosynthetic organs of maize. Plant Physiol 122: 887–894

    Article  PubMed  CAS  Google Scholar 

  • Youssefian S, Nakamura M, Orudgev E and Kondo N (2001) Increased cysteine biosynthesis capacity of transgenic tobacco overexpressing an O-acetylserine(thiol) lyase modifies plant responses to oxidative stress. Plant Physiol 126: 1001–1011

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kopriva, S., Koprivova, A. (2003). Sulphate Assimilation: A Pathway Which Likes to Surprise. In: Abrol, Y.P., Ahmad, A. (eds) Sulphur in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0289-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0289-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6276-5

  • Online ISBN: 978-94-017-0289-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics