Skip to main content

Sulphate Uptake and Transport

  • Chapter
Sulphur in Plants

Abstract

This chapter describes the physiological and biochemical background of sulphate transport in relation to current molecular approaches. Following identification and isolation of the first plant gene encoding H+/sulphate co-transporter, a large gene family has now been identified. Phylogenetic analysis of this gene family suggests a specialisation of function of subgroups defined by the patterns of gene expression and tissue, cellular and sub-cellular localisation. Functional characteristics of the cloned transporters have been determined by expression in a heterologous yeast expression system, utilising sulphate transporter deficient mutants. A range of affinity constants for sulphate has been determined. An analysis of conserved amino acids together with site-directed mutagenesis indicates residues of probable functional importance.

The control of sulphate uptake and assimilation can be described by a model of a ‘highly regulated circuit’, mediated by feedback loops involving key metabolites of cysteine biosynthesis. In this model, expression of genes involved in uptake and assimilation are under positive regulation by O-acetylserine, which accumulates when insufficient sulphide is available to utilise the O-acetylserine for cysteine synthesis. This modulates the activity of the serine acetyltransferase/O-acetylserine-thiol-lyase complex. A negative feedback mechanism, mediated by reduced S-compounds may also act at the level of gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aravind L and Koonin EV (2000) The STAS domain–a link between anion transporters and antisigma-factor antagonists. Curr Biol 10: R53–55

    Article  PubMed  CAS  Google Scholar 

  • Biedlingmaier S and Schmidt A (1989) Sulfate transport in normal and S-deprived Chlorella fusca. Z Naturforsch 44: 495–503

    CAS  Google Scholar 

  • Bolchi A, Petrucco S, Tenca PL, Foroni C and Ottonello S (1999) Coordinate modulation of maize permease and ATP sulpfurylase mRNAs in response to variations in sulfur nutritional status: stereospecific down-regulation by L-cysteine. Plant Mol Biol 39: 527–537

    Article  PubMed  CAS  Google Scholar 

  • Bourgis F, Roje S, Nuccio ML, Fisher DB, Tarczynski MC, Li CJ, Herschbach C, Rennenberg H, Pimenta MJ, Shen TL, Gage DA and Hanson AD (1999) S-methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase. Plant Cell 11: 1485–1497

    PubMed  CAS  Google Scholar 

  • Brandl CJ and Deber CM (1986) Hypothesis about the function of membrane-buried proline residues in transport proteins. Proc Nat Acad Sci USA 83: 917–921

    Article  PubMed  CAS  Google Scholar 

  • Breton A and Surdin-Kerjan Y (1977) Sulfate uptake in Saccharomyces cerevisiae: biochemical and genetic study. J Bacteriol 132: 224–232

    PubMed  CAS  Google Scholar 

  • Clarkson DT, Smith FW and Vandenberg PJ (1983) Regulation of sulfate transport in a tropical legume, Macroptilium atropurpureum cv Sirato. JExp Bot 34: 1463–1483

    Article  CAS  Google Scholar 

  • Clarkson DT, Hawkesford MJ, Davidian J-C and Grignon C (1992) Contrasting responses of sulfate and phosphate-transport in barley (Hordeum vulgare L) roots to protein-modifying reagents and inhibition of protein-synthesis. Planta 187: 306–314

    Article  CAS  Google Scholar 

  • Datko AH and Mudd SH (1984) Sulfate uptake and its regulation in Lemna paucicostata Hegelm.6746. Plant Physiol 75: 466–473

    Article  PubMed  CAS  Google Scholar 

  • Davies JP, Yildiz F and Grossman AR (1994) Mutants of Chlamydomonas with aberrant responses to sulfur deprivation. Plant Cell 6: 53–63

    PubMed  CAS  Google Scholar 

  • Davies JP, Yildiz FH and Grossman A (1996) Sac 1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation. EMBO J 15: 2150–2159

    PubMed  CAS  Google Scholar 

  • Davies JP, Yildiz FH and Grossman AR (1999) Sac3, an Snfl-like serine/threonine kinase that positively and negatively regulates the responses of Chlamydomonas to sulfur limitation. Plant Cell 11: 1179–1190

    PubMed  CAS  Google Scholar 

  • Gede I, Adiputra K and Anderson JW (1995) Effect of sulphur nutrition on redistribution of sulphur in vegetative barley. Physiol Plant 95: 643–650

    Article  Google Scholar 

  • Hästbacka J, de la Chapelle A, Mahtani MM, Clines G, Reeve-Daly MP, Daly M, Hamilton BA, Kusumi K, Trivedi B, Weaver A, Coloma A, Lovett M, Buckler A, Kaitila I and Lander ES (1994) The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell 78: 1073–1087

    Article  PubMed  Google Scholar 

  • Hatzfeld Y, Cathala N, Grignon C and Davidian J-C (1998) Effect of ATP sulfurylase overexpression in Bright Yellow 2 tobacco cells. Regulation of ATP sulfurylase and sulphate transport activities. Plant Physiol 116: 1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Hawkesford MJ (2000) Plant responses to sulphur deficiency and the genetic manipulation of sulphate transporters to improve S-utilisation efficiency. J Exp Bot 51: 131–138

    CAS  Google Scholar 

  • Hawkesford MJ and Smith FW (1997) Molecular biology of higher plant sulphate transporters. In: Cram WJ, De Kok LJ, Stulen I, Brunold C and Rennenberg H (eds) Sulphur Metabolism in Higher Plants, pp 13 25. Backhuys Publishers, Leiden

    Google Scholar 

  • Hawkesford MJ and Wray JL (2000) Molecular genetics of sulphur assimilation. Adv Bot Res 33: 159–223

    Article  CAS  Google Scholar 

  • Hawkesford MJ, Davidian J-C and Grignon C (1993) Sulfate proton cotransport in plasma membrane vesicles isolated from roots of Brassica napus L. Increased transport in membranes isolated from sulfur-starved plants. Planta 190: 297–304

    Article  CAS  Google Scholar 

  • Heiss S, Schäfer HJ, Haag-Kerwer A and Rausch T (1999) Cloning sulfur assimilation genes of Brassica juncea L.: cadmium differentially affects the expression of a putative low-affinity sulfate transporter and isoforms of ATP sulfurylase and APS reductase. Plant Mol Biol 39: 847–857

    Article  PubMed  CAS  Google Scholar 

  • Herschbach C and Rennenberg H (1994) Influence of glutathione (GSH) on net uptake of sulfate and sulfate transport in tobacco plants. JExp Bot 45: 1069–1076

    Article  CAS  Google Scholar 

  • Jones SL and Smith IK (1981) Sulfate transport in cultured tobacco cells. Effects of calcium and sulfate concentration. Plant Physiol. 67: 445–448

    Article  PubMed  CAS  Google Scholar 

  • Khurana OK, Coupland LA, Shelden MC and Howitt SM (2000) Homologous mutations in two diverse sulphate transporters have similar effects. FEBS Lett 477: 118–122

    Article  PubMed  CAS  Google Scholar 

  • Kredich NM (1992) The molecular basis for positive regulation of cys promoters in Salmonella typhimurium and Escherichia coli. Mol Microbiol 6: 2747–2753

    Article  CAS  Google Scholar 

  • Kredich NM (1993) Gene regulation of sulfur assimilation. In: De Kok LJ, Stulen I, Rennenberg H, Brunold C and Rauser WE (eds) Sulfur Nutrition and Assimilation in Higher Plants, pp 37–47. SPB Academic Publishers, The Hague Lappartient AG and Touraine B (1996) Demand-driven control of root ATP sulfurylase activity and sulfate uptake in intact canola. Plant Physiol 111: 147–157

    Google Scholar 

  • Lappartient AG, Vidmar JJ, Leustek T, Glass ADM and Touraine B (1999) Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloemtranslocated compound. Plant J 18: 89–95

    Article  PubMed  CAS  Google Scholar 

  • Lee RB (1982) Selectivity and kinetics of ion uptake by barley plants following nutrient deficiency. Ann Bot 50: 429–449

    CAS  Google Scholar 

  • Leggett JE and Epstein E (1956) Kinetics of sulfate absorption by barley roots. Plant Physiol 31: 222–226

    Article  PubMed  CAS  Google Scholar 

  • Logan HM, Cathala N, Grignon C and Davidian J-C (1996) Cloning of a cDNA encoded by a member of the Arabidopsis thaliana ATP sulfurylase multigene family. Expression studies in yeast and in relation to plant sulfur nutrition. JBiol Chem 271: 12227–12233

    Article  CAS  Google Scholar 

  • Neuenschwander U, Suter M and Brunold C (1991) Regulation of sulfate assimilation by light and O-acetylL-serine in Lemna minor L. Plant Physiol 97: 253–258

    Article  PubMed  CAS  Google Scholar 

  • Ng AYN, Blomstedt CK, Gianello R, Hamill JD, Neale AD and Gaff DF (1996) Isolation and characterisation of a lowly expressed cDNA from the resurrection grass Sporobolus stapfianus with homology to eukaryotic sulfate transporter proteins (Acc. No. X96761) (PGR96–032). Plant Physiol 111: 651

    Article  Google Scholar 

  • Nissen P (1971) Uptake of sulfate by roots and leaf slices of barley: mediated by single, multiphasic mechanisms. Physiol Plant 24: 315–324

    Article  CAS  Google Scholar 

  • Passera C and Ferretti M (1988) Sulphate uptake by leaf mesophyll and bundle sheath cells of maize plants. Biol Plant 30: 451–456

    Article  CAS  Google Scholar 

  • Reizer J, Reizer A and Saier MH (1994) A functional superfamily of sodium/solute symporters. Biochim Biophys Acta 1197: 133–166

    Article  PubMed  CAS  Google Scholar 

  • Rennenberg H, Schmitz K and Bergmann L (1979) Long-distance transport of sulfur in Nicotiana tabacum. Planta 147: 57–62

    Article  CAS  Google Scholar 

  • Shelden MC, Loughlin P, Tiemey ML and Howitt SM (2001) Proline residues in two tightly coupled helices of the sulphate transporter, SHST1, are important for sulphate transport. Biochem J356: 589–594 Shibagaki N, Rose A, McDermott JP, Fujiwara T, Hayashi H, Yomeyama T and Davis JP (2002) Selenateresistant mutants of Arabidopsis thaliana identify Sultrl; 2,a sulfate transporter required for efficient transport of sulfate into roots. Plant J 29: 475–486

    Google Scholar 

  • Smith FW, Ealing, PM, Hawkesford MJ and Clarkson DT (1995a) Plant members of a family of sulfate transporters reveal functional subtypes. Proc Nat Acad Sci USA 92: 9373–9377

    Article  PubMed  CAS  Google Scholar 

  • Smith FW, Hawkesford M.1, Prosser IM and Clarkson DT (1995b) Isolation of a cDNA from Saccharomyces cerevisiae that encodes a high affinity sulphate transporter at the plasma membrane. Mol Gen Genet 247: 709–715

    CAS  Google Scholar 

  • Smith FW, Hawkesford MJ, Ealing PM, Clarkson, DT, Vandenberg PJ, Belcher A and Warrilow AGS (1997) Regulation of expression of a cDNA from barley roots encoding a high affinity sulphate transporter. Plant J 12: 875–884

    Article  PubMed  CAS  Google Scholar 

  • Smith IK (1975) Sulfate transport in cultured tobacco cells. Plant Physiol 55: 303–307

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Sasakura N, Noji M and Saito K (1996) Isolation and characterization of a cDNA encoding a sulfate transporter from Arabidopsis thaliana. FEBS Lett 392: 95–99

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, de Almeida Engler J, Engler G, van Montagu M and Saito K (1997) Regulation of sulfur assimilation in higher plants: A sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. Proc Natl Acad Sci USA 94: 11102–11107

    Article  CAS  Google Scholar 

  • Takahashi H, Asanuma W and Saito K (1999a) Cloning of an Arabidopsis cDNA encoding a chloroplast localizing sulphate transporter isoform. J Exp Bot 50: 1713–1714

    CAS  Google Scholar 

  • Takahashi H, Sasakura N, Kimura A, Watanabe A and Saito K (1999b) Identification of two leaf-specific sulfate transporters in Arabidopsis thaliana (Ace. No. ABO12048 and AB004060) (PGR99–154). Plant Physiol 121: 686

    Article  Google Scholar 

  • Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalf M, Hawkesford MJ and Saito K (2000) The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J 23: 171–182

    Article  PubMed  CAS  Google Scholar 

  • Vange MS, Holmem K and Nissen P (1974) Mutiphasic uptake of sulfate by barley roots. I. Effects of analogues, phosphate, and pH. Physiol Plant 31: 292–301

    Google Scholar 

  • Vidmar JJ, Schjoerring JK, Touraine B and Glass ADM (1999) Regulation of the hvstl gene encoding a high-affinity sulfate transporter from Hordeum volgare. Plant Mol Biol 40: 883–892

    Google Scholar 

  • Vidmar JJ, Tagmount A, Cathala N, Touraine B and Davidian J-C (2000) Cloning and characterization of a root specific high-affinity sulfate transporter from Arabidopsis thaliana. FEBS Lett 475: 65–69

    Article  PubMed  CAS  Google Scholar 

  • von Heijne G (1992) Membrane-protein structure prediction-hydrophobicity analysis and the positive-inside rule. J Mol Biol 225: 487–494

    Article  Google Scholar 

  • Yildiz FH, Davies JP and Grossman A (1996) Sulfur availability and the SAC] gene control adenosine triphosphate sulfurylase gene expression in Chlamydomonas reinhardtii. Plant Physiol 112: 669–675

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto N, Takahashi H, Smith FW, Yamaya T and Saito K (2002) Two distinct high-affinity sulfate tran sporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots. Plant J 29: 465–473

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hawkesford, M.J., Buchner, P., Hopkins, L., Howarth, J.R. (2003). Sulphate Uptake and Transport. In: Abrol, Y.P., Ahmad, A. (eds) Sulphur in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0289-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0289-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6276-5

  • Online ISBN: 978-94-017-0289-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics