Skip to main content

Automated 3-D Horizon Tracking and Seismic Classification Using Artificial Neural Networks

  • Chapter
Geophysical Applications of Artificial Neural Networks and Fuzzy Logic

Part of the book series: Modern Approaches in Geophysics ((MAGE,volume 21))

Abstract

Seismic surveys are routinely carried out in three dimensions, resulting in large volumes of high-resolution seismic data and a corresponding increase in the workload of an interpreter. An automatic tracker is described in this chapter, based on artificial neural networks (ANNs), which enables horizons to be tracked in three dimensions with less input from an interpreter compared to most commercial automatic trackers. More time can therefore be spent by the interpreter investigating geologically complex areas. A hybrid ANN is employed which combines both unsupervised (self-organising feature map) and supervised (multilayer perceptron) network paradigms. The tracker is demonstrated on a real three-dimensional (3-D) seismic data set, and is shown to be a viable technique for use as a standard tool and for enhancing efficiency in 3-D seismic interpretation. 1.5-D and 2-D methods have also been demonstrated successfully, which account for the seismic character above, below, behind and ahead of the current tracking position.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts, P., and Moorfeld, K., 1999, Artificial neural networks for seismic horizon tracking across discontinuities: 61st Ann. Internat. Mtg., Eur. Assoc. Geosci. Eng., Extended Abstracts, Paer 6–31.

    Google Scholar 

  • Alberts, P., Warner, M., and Lister, D., 2000, Artificial neural networks for simultaneous multi-horizon tracking across discontinuities: 70th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, INT 5.4.

    Google Scholar 

  • Bowie, J. L., and Durrani, T. S., 1988, Event tracking in a seismic wavefield: 50th Ann. Internat. Mtg., Eur. Assoc. Expl. Geophys. Extended Abstracts.

    Google Scholar 

  • Brown, A. R., 1991, Interpretation of three-dimensional seismic data: AAPG Memoir 42, Tulsa, Oklahoma.

    Google Scholar 

  • Brown, A. R., 1998, Interpreter’s corner-picking philosophy for 3-D stratigraphie interpretation: The Leading Edge, 17, 1198–1200.

    Google Scholar 

  • Carpenter, G. A., and Grossberg, S., 1987, A massively parallel architecture for a self-organizing neural pattern recognition machine: Computer Vision, Graphics, and Image Processing, 37, 54–115.

    Article  Google Scholar 

  • Carpenter, G. A., Cohen, M. A., and Grossberg, S., 1987, Technical comments on “Computing with neural networks”: Science, 235, 1226–1227.

    Google Scholar 

  • Clark, G. A., Glinsky, M. E., Sandhya Devi, K. R., Robinson, J. H., Cheng, P. K. Z., and Ford, G. E., 1996, Automatic event picking in pre-stack migrated gathers using a probabilistic neural network: 66th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 735–738.

    Google Scholar 

  • Dyk, K., and Eisler, J. D., 1951, A study of the influence of background noise on reflection picking: Geophysics, 16, 450–455.

    Google Scholar 

  • Fahlman, S. E., 1988, Faster-learning variations on back-propagation: an empirical study, in Touretzky, D. S., Hinton, G., and Sejnowski, T., Eds., Proceedings of the 1988 connectionist models summer school, San Mateo, CA: Morgan Kaufmann, 38–51.

    Google Scholar 

  • Fahlman, S. E., and Lebiere, C., 1990, The cascade-correlation learning architecture, in Touretzky, D. S., Ed., Advances in neural information processing systems 2, San Mateo, CA: Morgan Kaufmann, 524–532.

    Google Scholar 

  • Garotta, R., 1971, Selection of seismic picking based upon the dip, move-out and amplitude of each event: Geophys. Prosp., 19, 357–370.

    Article  Google Scholar 

  • Harrigan, E., 1992, Seismic event tracking: Ph.D. thesis, University of Strathclyde, Glasgow, Scotland.

    Google Scholar 

  • Harrigan, E., and Durrani, T. S., 1991, Automated horizon picking by multiple target tracking: 53rd Ann. Internat. Mtg., Eur. Assoc. Expl. Geophys., Extended Abstracts, 440–441.

    Google Scholar 

  • Harrigan, E., Kroh, J. R, Sandham, W. A., and Durrani, T. S., 1991a, Seismic horizon picking using an artificial neural network: Proc. IEEE Internat. Workshop on Parallel Architectures for Seismic Data Processing, 2–3 September 1991, Glasgow, Scotland.

    Google Scholar 

  • Harrigan, E., Kroh, J. R, Sandham, W. A., and Durrani, T. S., 1991b, Seismic wavelet extraction using artificial neural networks: Proc. 2nd IEE Internat. Conf. on Artificial Neural Networks, 18–20 November 1991, Bournemouth, UK.

    Google Scholar 

  • Harrigan, E., Sandham, W. A., and Durrani, T. S., 1992a, 3-D event tracking using cross-probabilistic data association (XPDA): 54`h Ann. Internat. Mtg., Eur. Assoc. Expl. Geophys., Extended Abstracts.

    Google Scholar 

  • Harrigan, E., Kroh, J. R, Sandham, W. A., and Durrani, T. S., 1992b, Seismic horizon picking using an artificial neural network: Proc. IEEE Internat. Conf. on Acoustics, Speech and Signal Processing, 3, 105–108.

    Google Scholar 

  • Haykin, S., 1999, Neural networks - a comprehensive foundation (2“d ed): Prentice-Hall, Inc.

    Google Scholar 

  • Hopfield, J. J., 1982, Neural networks and physical systems with emergent collective computational abilities: Proc. National Academy of Sciences, 79, 2554–2558.

    Article  Google Scholar 

  • Hopfield, J. J., 1984, Neurons with graded response have collective computational properties like those of two-state neurons: Proc. National Academy of Sciences, 81, 3088–3092.

    Article  Google Scholar 

  • Hopfield, J. J., and Tank, D. W., 1985, Neural computation of decisions in optimization problems: Biological Cybernetics, 52, 141–152.

    Google Scholar 

  • Hopfield, J. J., and Tank, D. W., 1986, Computing with neural circuits: Science, 233, 625–633.

    Google Scholar 

  • Huang, K. Y., 1997, Hopfield neural network for seismic horizon picking: 67th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, INT 1.02.

    Google Scholar 

  • Huang, K. Y., Sheen, T. H., Cheng, S. W., Lin, Z. S., and Fu, K. S., 1987, Seismic image processing, in Aminzadeh, F., Ed., Pattern recognition and image processing: handbook of geophysical exploration: Geophysical Press, 20, 79–109.

    Google Scholar 

  • Huang, K. Y., Chang, W. R. I., and Yen, H. T., 1990, Self-organising neural network for picking seismic horizons: 60th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 313–316.

    Google Scholar 

  • Huang, K. Y., and Wang, S. P., 2000, Neural networks for seismic wavelet extraction and clustering: 70th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, TNT P1.11.

    Google Scholar 

  • Kemp, F., Threet, J. R, and Veezhinathan, J., 1992, A neural net branch and bound seismic horizon tracker: 62nd Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 10–13.

    Google Scholar 

  • Kohonen, T., 1984, Self-organization and associative memory: Springer-Verlag, Berlin.

    Google Scholar 

  • Kusuma, T., and Fish, B. C., 1993, Toward more robust neural network first break and horizon pickers: 63rd Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 238–241.

    Google Scholar 

  • Lashgari, B., 1991, Fuzzy classification with applications to geophysical data, in Aminzadeh, F., and Simaan, M., Eds., Expert systems in exploration: Soc. Expl. Geophys., 161–178.

    Google Scholar 

  • Lashgari, B., and Estill, R. E., 1991, Application of fuzzy pattern recognition to seismic stratigraphy: 53rd Ann. Internat. Mtg., Eur. Assoc. Expl. Geophys., Extended Abstracts, A040.

    Google Scholar 

  • Leggett, M., Sandham, W. A., and Durrani, T. S., 1993, Seismic event classification using a self-organising Kohonen network: Proc. IEE/IEEE Workshop on Natural Algorithms in Signal Processing, 14–16th November 1993, Chelmsford, U.K.

    Google Scholar 

  • Leggett, M., Woodham, C A, Sandham, W.A., and Durrani, T. S., 1994a, Seismic event tracking with PDA in an interpretation environment: Proc. 7th Internat. Conf., Eur. Assoc. Sig. Proc., 225–228.

    Google Scholar 

  • Leggett, M., Sandham, W. A., and Durrani, T. S., 1994b, Pre-processing strategies for 3-D seismic event tracking using artificial neural networks: 56th Ann. Internat. Mtg., Eur. Assoc. Expl. Geophys, Extended Abstracts, BO49.

    Google Scholar 

  • Leggett, M., Smyth, M., Manning, A., Prescott, C. N., and Edwards, H., 1995, Neural networks and paper seismic interpretation: 65th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 142–144.

    Google Scholar 

  • Leggett, M., Sandham, W. A., and Durrani, T. S., 1996, 3-D Seismic horizon tracking using an artificial neural network: First Break, 14, 413–418.

    Google Scholar 

  • Paulson, K. V., and Merdier, S. C., 1968, Automatic seismic reflection picking: Geophysics, 33, 431–440.

    Google Scholar 

  • Prochnow, U., 1999, Horizon tracking in 3D seismic datasets using neural networks: 61st Mn. Internat. Mtg., Eur. Assoc. Geosci. Eng., Extended Abstracts, 6–32.

    Google Scholar 

  • Specht, D. E., 1990, Probabilistic neural networks: Neural Networks, 3, 109–118.

    Article  Google Scholar 

  • Taner, M. T., Koehler, F., and Sheriff, R. E., 1979, Complex seismic trace analysis: Geophysics, 44, 1041–1063.

    Google Scholar 

  • Tank, D. W., and Hopfield, J. J., 1987, Collective computation in neuronlike circuits: Scientific American, 257,104–114.

    Google Scholar 

  • Tu, P., Mason, I., and Zisserman, A., 1993, An automated system for picking seismic events: 63rd Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 234–237.

    Google Scholar 

  • Veezhinathan, J., and Threet, J., 1993, Multiple horizons tracking: Proc. World Congress on Neural Networks 1993,1(379)-1(382).

    Google Scholar 

  • Woodham, C. A., Sandham, W. A., and Durrani T. S., 1995a, 3-D seismic tracking with probabilistic data association: Geophysics, 60, 1088–94.

    Google Scholar 

  • Woodham, C. A., Sandham, W. A., and Durrani, T. S., 1995b, Error analysis for the seismic PDA tracker: Geophysics, 60, 1451–1456.

    Google Scholar 

  • Zadeh, L., 1965, Fuzzy sets: Information and Control, 8, 338–353.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Leggett, M., Sandham, W.A., Durrani, T.S. (2003). Automated 3-D Horizon Tracking and Seismic Classification Using Artificial Neural Networks. In: Sandham, W.A., Leggett, M. (eds) Geophysical Applications of Artificial Neural Networks and Fuzzy Logic. Modern Approaches in Geophysics, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0271-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0271-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6476-9

  • Online ISBN: 978-94-017-0271-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics