Skip to main content

Modification of Polymers in Supercritical Carbon Dioxide

  • Chapter
Carbon Dioxide Recovery and Utilization

Abstract

The interaction of scFluids and polymers are governed by the intermolecular forces between solvent-solvent, solvent-polymer segment, and polymer segment-segment pairs. Because of its symmetry, within reasonable pressure values, CO2 does not have a dipole moment, but it does have a quadrupole moment significant over a much shorter distance than dipolar interactions. The quadrupole moment and the Lewis acidity of CO2 imparts to the carbon dioxide the peculiarity to be a solvent for selected classes of polymers like perfluorinated polyacrylates, polysiloxanes and polyether-polycarbonate diblock copolymers [1–3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DeSimone, J. M., Guan, Z., Elsbernd, C. S. “Synthesis of Fluoropolymers in Supercritical Carbon-Dioxide” Science, 257 (5072), 945–947, 1992.

    Article  CAS  Google Scholar 

  2. Shaffer, K. A., Jones, T. A., Canelas, D. A., DeSimone, J. M. “Dispersion Polymerization in Carbon Dioxide Using Siloxane-Based Stabilizers” Macromol., 29, 2704, 1996.

    Article  CAS  Google Scholar 

  3. Sarbu, T., Styranec, T., Beckman, E. J. “Design and Synthesis of Low Cost, Sustainable CO2-philes” Ind. Eng. Chem. Res., 39, 4678–4683, 2000.

    Article  CAS  Google Scholar 

  4. Kazarian, S. G., Vincent, M. F., Bright, F. V., Liotta, C. L., Eckert, C. A. “Specific intermolecular interaction of carbon dioxide with polymers” J. Am. Chem. Soc., 118 1729–1736, 1996.

    Article  CAS  Google Scholar 

  5. Kazarian, S. G., Brantley, N. H., West, B. L., Vincent, M. F., Eckert, C. A. “In situ spectroscopy of polymers subjected to supercritical CO2: Plasticization and dye impregnation” Appl. Spectrocopy, 51, 491–494, 1997.

    Article  CAS  Google Scholar 

  6. Kendall, J. L., Canelas, D. A., Young, J. L., De Simone, J. M. “Polymerizations in Supercritical Carbon Dioxide” Chem. Rev., 99, 543–563, 1999.

    Article  CAS  Google Scholar 

  7. Kazarian, S. G. “Polymer Processing with Supercritical Fluids” Polymer Science, 42, 78–101, 2000.

    Google Scholar 

  8. Hubert, P., Vitzthum, O. G. “Fluid Extraction of Hops, Spices, and Tobacco with Supercritical Gases” Angew. Chem. Int. Ed. Eng., 17, 710–715, 1978.

    Article  Google Scholar 

  9. Zacharia, R. E., Simon, S. L., Beckman, E. J., Enick, R. M. “Improving the thermal stability of a polymer through liquid carbon dioxide extraction of a metal compound” Polymer Degradation and Stability., 63, 85–88, 1999.

    Article  CAS  Google Scholar 

  10. Marsal, A., Celma, P. J., Cot, J., Cequier, M. “Supercritical CO2 extraction as a clean degreasing process in the leather industry” J. Sup. Fluids., 16, 217–223, 2000.

    Article  CAS  Google Scholar 

  11. Rosolovsky, J., Boggess, R. K., Rubira, A. F., Taylor, L. T., Stoakley, D. M., StClair, A. K. “Supercritical fluid infusion of silver into polyimide films of varying chemical composition” J. Mat. Res., 12, 3127–3133, 1997.

    Article  CAS  Google Scholar 

  12. Boggess, R. K., Taylor, L. T., Stoakley, D. M., StClair, A. K. “Highly reflective polyimide films created by supercritical fluid infusion of a silver additive” J. Appl. Polymer Sci., 64, 1309–1317, 1997.

    Article  CAS  Google Scholar 

  13. Said-Galiyev, E., Nikitin, L., Vinokur, R., Gallyamov, M., Kurykin, M., Petrova, O., Lokshin, B., Volkov, I., Khokhlov, A., Schaumburg, K. “New chelate complexes of copper and iron: Synthesis and impregnation into a polymer matrix from solution in supercritical carbon dioxide” Ind. Eng. Chem. Res., 39, 4891–4896, 2000.

    Article  CAS  Google Scholar 

  14. Ma, X., Tomasko, D. L. “Coating and impregnation of a nonwoven fibrous polyethylene material with a nonionic surfactant using supercritical carbon dioxide” Ind. Eng. Chem. Res., 36, 1586–1597, 1997.

    Article  CAS  Google Scholar 

  15. Barry, S. E., Soane, D. S. “Second Harmonic Generation in Carbon Dioxide Processed Thin Polymer Films” Macromol., 29, 3565–3573, 1996.

    Article  CAS  Google Scholar 

  16. Chapman, B. R., Paulaitis, M. E., Gochanour, C. R. “Effect of CO2 plasticization on azobenzene diffusion in glassy polystyrene near the glass transition” Macromol., 34, 340–342, 2001.

    Article  CAS  Google Scholar 

  17. Bach, E., Cleve, E., Schollmeyer, E. “Dyeing of poly(ethylene terephthalate) fibers in supercritical carbon doxide”. Rudolph von Rohr, Ph. And Trepp, C., Eds., Zürich: Elsevier Science B. V., 1996.

    Google Scholar 

  18. Saus, W., Knittel, D., Schollmeyer, E. “Dyeing of Textiles in Supercritical CarbonDioxide” Textile Research Journal., 63, 35, 1993.

    Article  Google Scholar 

  19. Hayes, H. J., McCarthy, T. J. “Maleation of poly(4-methyl-1-pentene) using supercritical carbon dioxide” Macromol., 31, 4813–4819. 1998.

    Article  CAS  Google Scholar 

  20. Spadaro, G., De Gregorio, R., Galia, A., Valenza, A., Filardo, G. “Gamma radiation induced maleation of polypropylene using supercritical CO2: preliminary results” Polymer., 41, 3491–3494, 2000.

    Article  CAS  Google Scholar 

  21. Friedmann, G., Guilbert, Y., Catala, J. M. “Modification chimique de polymères en milieu CO2 supercritique: Greffage de groupes isocyanato-isopropyle sur une chaîne de poly(éthylène-co-alcool vinylique)”. Eur. Polymer J., 36, 13–20, 2000.

    Article  CAS  Google Scholar 

  22. Muth, O., Hirth, T., Vogel, H. “Polymer modification by supercritical impregnation” J. Super. Fluids., 17, 65–72, 2000.

    Article  CAS  Google Scholar 

  23. Watkins, J. J., McCarthy, T. J. “Polymerization in supercritical fluid-swollen polymers: a new route to polymer blends” Macromol., 27, 4845–4847, 1994.

    Article  CAS  Google Scholar 

  24. Kung, E., Lesser, A. J., McCarthy, T. J. “Morphology and mechanical performance of polystyrene/polyethylene composites prepared in supercritical carbon dioxide” Macromol., 31, 4160–4169, 1998.

    Article  CAS  Google Scholar 

  25. Arora, K. A., Lesser, A. J., McCarthy, T. J. “Synthesis, characterization, and expansion of poly(tetrafluoroethylene-co-hexafluoropropylene)/polystyrene blends processed in supercritical carbon dioxide” Macromol., 32, 2562–2568, 1999.

    Article  CAS  Google Scholar 

  26. Kung, E., Lesser, A. J., McCarthy, T. J. “Composites prepared by the anionic polymerization of ethyl 2-cyanoacrylate within supercritical carbon dioxide-swollen poly(tetrafluoroethylene-co-hexafluoropropylene)” Macromol., 33, 8192–8199, 2000.

    Article  CAS  Google Scholar 

  27. Li, D., Han, B. “Impregnation of polyethylene (PE) with styrene using supercritical CO2 as the swelling agent and preparation of PE/polystyrene composites”. Ind. Eng. Chem. Res., 39, 4506–4509, 2000.

    Article  CAS  Google Scholar 

  28. Shim, J. J., Yates, M. Z., Johnston, K. P. “Polymer coatings by rapid expansion of suspensions in supercritical carbon dioxide” Ind. Eng. Chem. Res., 38, 3655–3662, 1999.

    Article  CAS  Google Scholar 

  29. Lee, M., Tzoganakis, C., Park, C. B. “Effects of supercritical CO2 on the viscosity and morphology of polymer blends” Adv. Polymer Tech., 19, 300–311, 2000.

    Article  CAS  Google Scholar 

  30. Lee, M., Tzoganakis, C., Park, C. B. “Extrusion of PE/PS blends with supercritical carbon dioxide” Polymer Eng. Sci., 38, 1112–1120, 1998.

    Article  CAS  Google Scholar 

  31. Elkovitch, M. D., Lee, L. J., Tomasko, D. L. ANTEC’98, p. 2538–2541.

    Google Scholar 

  32. Elkovitch, M. D., Tomasko, D. L., Lee, L. J. “Supercritical carbon dioxide assisted blending of polystyrene and poly(methyl methyacrylate)” Polymer Eng. Sci., 39, 2075–2084, 1999.

    Article  CAS  Google Scholar 

  33. Zhong, Z., Zheng, S., Mi, Y. “High-pressure DSC study of thermal transitions of a poly(ethylene terephthalate)/carbon dioxide system” Polymer., 40, 3829–3834, 1999.

    Article  CAS  Google Scholar 

  34. Mensitieri, G., DelNobile, N. A., Guerra, G., Apicella, A., Alghatta, H. “Low-Temperature Melting Behavior of CO2 Crystallized Modified PETS” Polymer Eng. Sci., 35, 506, 1995.

    CAS  Google Scholar 

  35. Kazarian, S. G., Brantley, N. H., Eckert, C. A. “Applications of vibrational spectroscopy to characterize poly(ethylene terephthalate) processed with supercritical CO2” Vibrat. Spectrosc., 19, 277–283, 1999.

    Article  CAS  Google Scholar 

  36. Kazarian, S. G., Brantley, N. H., Eckert, C. A. “Dyeing to be clean: Use supercritical carbon dioxide” CHEMTECH, 29, 36–41, 1999.

    CAS  Google Scholar 

  37. Schultze, J. D., Bohning, M. “Sorption and Permeation Properties of Poly(P-Phenylene Sulfide) Crystallized in the Presence of Sorbed Gas Molecules” Springer J. Macromol. Chem., 194, 431–444, 1993.

    Article  CAS  Google Scholar 

  38. Schultze, J. D., Bolming, M., “Enhanced Crystallization by Annealing of Poly(Phenylene Sulfide) in Presence of CO2 and N2O” Springer J. Macromol. Chem., 194, 339, 1993.

    Article  CAS  Google Scholar 

  39. Gross, S. M., Roberts, G. W., Kiserov, D. J., DeSimone, J. M. “Crystallization and solidstate polymerization of poly(bisphenol A carbonate) facilitated by supercritical CO2” Macromol., 33, 40–45, 2000.

    Article  CAS  Google Scholar 

  40. Handa, Y. P., Capowski, S., O’Neill, M. “Compressed-Gas-Induced Plasticization of Polymers” Thermochim. Acta., 226, 177–185, 1993.

    Article  CAS  Google Scholar 

  41. Kazarian, S. G., Briscoe, B. J., Lawrence, C. J. “Supercritical Enhanced Processing” Polymer Process Engineering 99, 28–36, 1999.

    Google Scholar 

  42. Handa, Y. P., Zhang, Z. Y., Wong, B. “Effect of compressed CO2 on phase transitions and polymorphism in syndiotactic polystyrene” Macromol., 30, 8499–8504, 1997.

    Article  CAS  Google Scholar 

  43. Briscoe, B. J., Lorge, O., Wajs, A., Dang, P. “Carbon dioxide poly(vinylidene fluoride) interactions at high pressure” J. Polymer Sci., Part B: Polymer Physics., 36, 2435–2447, 1998.

    Article  CAS  Google Scholar 

  44. Park, C. B., Baldwin, D. F., Suh, N. P. “Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers” Polymer Eng. Sci., 35, 432–440, 1995.

    Article  CAS  Google Scholar 

  45. Liang, M. T., Wang, C. M. Proceeding of the 6th Meeting on Supercritical Fluids: Chemistry and Materials, Nottingham (UK), p. 151–156, 10–13 April 1999.

    Google Scholar 

  46. Huang, Q., Seibig, B., Paul, D. “Polycarbonate hollow fiber membranes by melt extrusion” J. Membr. Sci., 161, 287–291, 1999.

    Article  CAS  Google Scholar 

  47. Seibig, B., Huang, Q., Paul, D. “Design of a novel extrusion system for manufacturing microcellular polymer” Cellular Polymers, 19, 93–102, 2000.

    CAS  Google Scholar 

  48. Goel, S. K., Beckman, E. J. “Generation of microcellular polymeric foams using supercritical carbon dioxide. I: Effect of pressure and temperature on nucleation” Polymer Eng. Sci., 34, 1137–1147, 1994.

    Article  CAS  Google Scholar 

  49. Goel, S. K., Beckman, E. J. “Generation of microcellular polymeric foams using supercritical carbon dioxide. II: Cell growth and skin formation” Polymer Eng. Sci., 34, 14, 1148–1156, 1994.

    Article  CAS  Google Scholar 

  50. Goel, S. K., Beckman, E. J. “Nucleation and growth of microcellular materials: supercritical CO2 as foaming agent” AIChE Journal, 41, 357–366, 1995.

    Article  CAS  Google Scholar 

  51. Park, C. B., Suh, N. P. “Filamentary extrusion of microcellular polymers using a rapid decompressive element” Polymer Eng. Sci., 36, 34–48, 1996.

    Article  CAS  Google Scholar 

  52. Park, C. B., Behravesh, A. H., Venter, R. D. “Low density microcellular foam processing in extrusion using CO2” Polymer Eng. Sci., 38, 1812–1823, 1998.

    Article  CAS  Google Scholar 

  53. Park, C. B., Suh, N. P. “Rapid polymer/gas solution formation for continuous production of microcellular plastics” J. Manuf. Sci. Eng., 118, 639–645, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Filardo, G., Galia, A., Giaconia, A. (2003). Modification of Polymers in Supercritical Carbon Dioxide. In: Aresta, M. (eds) Carbon Dioxide Recovery and Utilization. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0245-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0245-4_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6335-9

  • Online ISBN: 978-94-017-0245-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics