Skip to main content

Localization and Minimal Normalization of Some Basic Mixed Boundary Value Problems

  • Chapter
Factorization, Singular Operators and Related Problems

Abstract

We consider a class of mixed boundary value problems in spaces of Bessel potentials. By localization, an operator L associated with the BVP is related through operator matrix identities to a family of pseudodifferential operators which leads to a Fredholm criterion for L. But particular attention is devoted to the non-Fredholm case where the image of L is not closed. Minimal normalization, which means a certain minimal change of the spaces under consideration such that either the continuous extension of L or the image restriction, respectively, is normally solvable, leads to modified spaces of Bessel potentials. These can be characterized in a physically relevant sense and seen to be closely related to operators with transmission property (domain normalization) or to problems with compatibility conditions for the data (image normalization), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aronszajn, N. and Smith, K. T., Theory of Bessel potentials I, Ann. Inst. Fourier, 11 (1961), 385–475.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bart, H. and Tsekanovskii, V. E., Matricial coupling and equivalence after extension. In: Operator Theory and Complex Analysis, Proc. Workshop in Sapporo, Japan, 1991, Operator Theory: Advances and Applications, 59, 143–160. Birkhäuser, Basel, 1992.

    Google Scholar 

  3. Calderón, A.-P., Lebesgue spaces of differentiable functions and distributions. In: Proc. Sympos. Pure Math., Vol. IV, 33–49. AMS, Providence, R.I., 1961.

    Google Scholar 

  4. Castro, L. P., Relations Between Singular Operators and Applications, Ph.D. Thesis in Mathematics, I.S.T., Technical University of Lisbon, 1998.

    Google Scholar 

  5. Castro, L. P. and Speck, F.-O., Regularity properties and generalized inverses of delta-related operators, Z. Anal. Anwendungen, 17 (1998), 577–598.

    Article  MathSciNet  MATH  Google Scholar 

  6. Castro, L. P. and Speck, F.-O., Relations between convolution type operators on intervals and on the half-line, Integr. Equat. Oper. Theor., 37 (2000), 169–207.

    Article  MathSciNet  MATH  Google Scholar 

  7. Clancey, K. and Gohberg, I., Factorization of Matrix Functions and Singular Integral Operators, Operator Theory: Advances and Applications, 3. Birkhäuser Verlag, Basel, 1981.

    Google Scholar 

  8. Duduchava, R., Integral Equations with Fixed Singularities. Teubner, Leipzig, 1979.

    MATH  Google Scholar 

  9. Duduchava, R., On multidimensional singular integral operators. I: The half-space case; II: The case of compact manifolds, J. Operator Theory, 11 (1984), 41–76 (I); 199–214 (II).

    Google Scholar 

  10. Duduchava, R., Wiener-Hopf equations with the transmission property, Integr. Equat. Oper. Theor., 15 (1992), 412–426.

    Article  MathSciNet  MATH  Google Scholar 

  11. Duduchava, R. and Silbermann, B., Boundary value problems in domains with peaks, Mem. Differential Equations Math. Phys., 21 (2000), 1–122.

    MathSciNet  MATH  Google Scholar 

  12. Duduchava, R. and Speck, F.-O., Pseudodifferential operators on compact manifolds with Lipschitz boundary, Math. Nachr., 160 (1993), 149–191.

    Article  MathSciNet  MATH  Google Scholar 

  13. Dybin, V. B., Normalization of the Wiener-Hopf operator, Dokl. Akad. Nauk SSSR, 191 (1970), 759–762 (in Russian). English translation: Soviet Math. Dokl., 11 (1970), 437–441.

    MATH  Google Scholar 

  14. Ehrhardt, T. and Speck, F.-O., Transformation techiques towards the factorization of non-rational 2 x 2 matrix functions, Linear Algebra Appl., 353 (2002), 53–90.

    Article  MathSciNet  MATH  Google Scholar 

  15. Èskin, G. I., Boundary Value Problems for Elliptic Pseudodifferential Operators, Translations of Mathematical Monographs, 52. AMS, Providence, R.I., 1981.

    Google Scholar 

  16. Gohberg, I. and Krupnik, N., One-Dimensional Linear Singular Integral Equations, Vol. I, Operator Theory: Advances and Applications, 53. Birkhäuser Verlag, Basel, 1992.

    Google Scholar 

  17. Khaikin, M. I., On the regularization of operators with non-closed range, Izv. Vyssh. Uchebn. Zaved. Mat., 8 (1970), 118–123 (in Russian).

    Google Scholar 

  18. Kravchenko, V. G., On normalization of singular integral operators, Dokl. Akad. Nauk SSSR, 285 (1985), 1314–1317 (in Russian). English translation: Soy. Math. Dokl., 32 (1985), 880–883.

    MATH  Google Scholar 

  19. Lang, S., Real and Functional Analysis, Graduate Texts in Mathematics, 142. Springer-Verlag, New York, 1993.

    Google Scholar 

  20. Litvinchuk, G. S. and Spitkovskii, I. M., Factorization of Measurable Matrix Functions, Operator Theory: Advances and Applications, 25. Birkhäuser Verlag, Basel, 1987.

    Google Scholar 

  21. Luneburg, E. and Hurd, R. A., On the diffraction problem of a half plane with different face impedances, Canad. J. Phys., 62 (1984), 853–860.

    MathSciNet  Google Scholar 

  22. Meister, E. and Speck, F.-O., Diffraction problems with impedance conditions, Appl. Anal., 22 (1986), 193–211.

    MathSciNet  MATH  Google Scholar 

  23. Meister, E. and Speck, F.-O., Modern Wiener-Hopf methods in diffraction theory. In: Ordinary and partial differential equations, Vol. II (Dundee, 1988), Pitman Res. Notes Math. Ser., 216, 130–171. Longman Scientific Technical, Harlow, 1989.

    Google Scholar 

  24. Mikhlin, S. G. and Prössdorf, S., Singular Integral Operators. Springer-Verlag, Berlin, 1986.

    Book  Google Scholar 

  25. Moura Santos, A., Minimal Normalization of Wiener-Hopf Operators and Applications to Sommerfeld Diffraction Problems, Ph.D. Thesis in Mathematics, I.S.T., Technical University of Lisbon, 1999.

    Google Scholar 

  26. Moura Santos, A., Speck, F.-O., and Teixeira, F. S., Compatibility conditions in some diffraction problems. In: Direct and inverse electromagnetic scattering(Gebze, 1995), Pitman Res. Notes Math. Ser., 361, 25–38. Longman, Harlow, 1996.

    Google Scholar 

  27. Moura Santos, A., Speck, F.-O., and Teixeira, F. S., Minimal normalization of Wiener-Hopf operators in spaces of Bessel potentials, J. Math. Anal. Appl., 225 (1998), 501531.

    Google Scholar 

  28. Prössdorf, S., Some Classes of Singular Equations, North-Holland Mathematical Library, 17. North-Holland Publishing Company, Amsterdam, 1978.

    Google Scholar 

  29. Rabinovich, V. S., Pseudodifferential operators on a class of noncompact manifolds, Math. USSR, Sbornik, 18 (1972), 45–59.

    Article  Google Scholar 

  30. Runst, T. and Sickel, W., Sobolev Spaces of Fractional Order, Nemytskij Operators and Nonlinear Partial Differential Equations, de Gruyter Series in Nonlinear Analysis and Applications, 3. De Gruyter, Berlin, 1996.

    Google Scholar 

  31. Sadosky, C. and Cotlar, M., On quasi-homogeneous Bessel potential operators. In: Singular integrals(Proc. Sympos. Pure Math., Chicago, Ill., 1966), 275–287. AMS, Providence, R.I., 1967.

    Google Scholar 

  32. Simonenko, I. B., A new general method of investigating linear operator equations of the type of singular integral equations, Soviet Math. Dokl., 5 (1964), 1323–1326.

    MATH  Google Scholar 

  33. Speck, F.-O., Mixed boundary value problems of the type of Sommerfeld’s half-plane problem, Proc. R. Soc. Edinburgh, Sect. A, 104 (1986), 261–277.

    Article  MathSciNet  MATH  Google Scholar 

  34. Speck, F.-O. and Duduchava, R., Bessel potential operators for the quarter-plane, Appl. Anal., 45 (1992), 49–68.

    MathSciNet  MATH  Google Scholar 

  35. Teixeira, F. S., Wiener-Hopf Operators in Sobolev Spaces and Applications to Diffraction Theory, Ph.D. Thesis in Mathematics, I.S.T., Technical University of Lisbon, 1989 (in Portuguese).

    Google Scholar 

  36. Triebel, H., Theory of Function Spaces II, Monographs in Mathematics, 84. Birkhäuser Verlag, Basel, 1992.

    Google Scholar 

  37. Wendland, W. L., Stephan, E., and Hsiao, G. C., On the integral equation method for the plane mixed boundary value problem of the Laplacian, Math. Methods Appl. Sci., 1 (1979), 265–321.

    Article  MathSciNet  MATH  Google Scholar 

  38. Wloka, J., Partial Differential Equations. Cambridge University Press, Cambridge, 1987.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

To Professor Georgii S. Litvinchuk on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Castro, L.P., Duduchava, R., Speck, FO. (2003). Localization and Minimal Normalization of Some Basic Mixed Boundary Value Problems. In: Samko, S., Lebre, A., dos Santos, A.F. (eds) Factorization, Singular Operators and Related Problems. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0227-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0227-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6333-5

  • Online ISBN: 978-94-017-0227-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics