Advertisement

The Median Principle for Inequalities and Applications

  • Sever S. Dragomir

Abstract

The “Median Principle” for different integral inequalities of Grüss and Ostrowski type is applied.

Keywords

median principle Grüss type inequality Ostrowski’s inequality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Cerone and S.S. Dragomir: ‘A Refinement of the Grüss Inequality and Applications’, RGMIA Res. Rep. Coll. 5 No. 2 (2002), Article 14. [online: http://rgmia.vu.edu.au/v5n2.html].
  2. P. Cerone, S.S. Dragomir and J. Roumeliotis: ‘Some Ostrowski type inequalities for n-time differentiable mappings and applications’, Demonstratio Mathematica 32 No. 2 (1999), 697–712.Google Scholar
  3. P. Cerone, S.S. Dragomir, J. Roumeliotis and J. Sunde: `A new generalistion of the trpezoid formula for n-time differentiable mappings and applications’, Demonstratio Mathematica 33 No. 4 (2000), 719–736.Google Scholar
  4. [4]
    X.-L. Cheng and J. Sun: ‘Note on the perturbed trapezoid inequality’, J. Ineq. Pure. & Appl. Math. 3 No. 2 (2002), Article 29. [online: http://jipam.vu.edu.au/v3n2/046_01.html]
  5. [5]
    S.S. Dragomir: ‘Improvements of Ostrowski and Generalised Trapezoid Inequality in Terms of the Upper and Lower Bounds of the First Derivative’, RGMIA Res. Rep. Coll. 5 (2002), Supplement, Article 10. [online. http://rgmia.vu.edu.au/v5(E).html]
  6. [6]
    S.S. Dragomir: ‘Sharp bounds of Cebysev functional for Stieltjes integrals and application’ (in preparation).Google Scholar
  7. [7]
    A. Ostrowski: ‘On an integral inequality’, Aequat. Math. 4 (1970), 358–373.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Sever S. Dragomir
    • 1
  1. 1.School of Communications and InformaticsVictoria University of TechnologyVictoriaAustralia

Personalised recommendations