Skip to main content

Spin Relaxation in Orientationally Ordered Molecules

  • Chapter
NMR of Ordered Liquids

Abstract

Nuclear Magnetic Resonance (NMR) has been shown to be an extremely powerful technique for investigating molecular orientational order and dynamics in partially ordered systems such as thermotropic and lyotropic liquid crystals (LC) [1]. In this Chapter, nuclear spin relaxation of orientationally ordered molecules is described. In addition, theoretical models explaining NMR observables are outlined for various dynamical processes in LCs. It is known that nuclear spin-lattice relaxation rates contain information on how a nuclear spin system exchanges energy with its surrounding “lattice”, i.e., all degrees of freedom in the physical system of interest except those of the nuclear spins. Pulsed NMR provides a highly versatile tool for measuring various spin relaxation rates which can probe the entire spectrum of molecular motions in LCs. As in ordinary liquids, mesogenic molecules can reorient and translate, as well as execute internal motions if they are non-rigid. Furthermore, these molecules align preferentially in a certain direction labeled by the director n̂0 and possibly also arrange spatially to form various layered structures. When these molecules move collectively, the local director fluctuates both spatially and temporally. These unique motions are known as order director fluctuations (ODF). All the dynamical processes mentioned can contribute to the spin relaxation in LCs. In addition, cross relaxation due to possible couplings between different motions may also exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dong, R.Y. Nuclear Magnetic Resonance of Liquid Crystals. Springer-Verlag, 1997.

    Book  Google Scholar 

  2. Bloembergen, N., Purcell, E.M., and Pound, R.V. (1948), Phys. Rev., 73:679.

    Article  CAS  Google Scholar 

  3. Rose, M.E. Elementary Theory ofAngular Momentum. Wiley, New York, 1957.

    Google Scholar 

  4. Brink, D.M., and Satchler, G. R. Angular Momentum. Clarendon, Oxford, 1962.

    Google Scholar 

  5. Abragam, A. The Principles of Nuclear Magnetism. Clarendon, Oxford, 1961.

    Google Scholar 

  6. Saupe, A. (1964), Z. Naturforsch. Teil A, 19:161.

    Google Scholar 

  7. Redfield, A.G. (1965), Advances in Magnetic Resonance,1:1.

    Google Scholar 

  8. Ahmad, S.B., Packer, K.J., and Ramsden, J.M. (1977), Mol. Phys., 33:857.

    Article  CAS  Google Scholar 

  9. Jeffrey, K.R. (1981), Bull. Magn. Reson., 3:69.

    Google Scholar 

  10. Jeener, J., and Broekaert, P. (1967), Phys. Rev., 157:232.

    Article  CAS  Google Scholar 

  11. Wimperis, S. (1989), J. Magn. Reson., 83:509.

    Google Scholar 

  12. Wimperis, S., and Bodenhausen, G. (1986), Chem. Phys. Lett., 132:194.

    Article  CAS  Google Scholar 

  13. Dong, R.Y. (1992), Bull. Magn. Reson., 14:134.

    CAS  Google Scholar 

  14. Davis, J.H., Jeffrey, K.R., Bloom, M., Valic, M.I., and Higgs, T.P. (1976), Chem. Phys. Leu., 42:390.

    Article  CAS  Google Scholar 

  15. Pincus, P. (1969), Solid State Commun., 7:415.

    Article  CAS  Google Scholar 

  16. Freed, J.H. (1977), J. Chem. Phys., 66:4183 and references therein.

    Article  CAS  Google Scholar 

  17. Vold, R.L., Vold, R.R., and Warner, M. (1988), J. Chem. Soc., Faraday Trans., 84:997.

    Article  CAS  Google Scholar 

  18. van der Zwan, G., and Plomp, L. (1989), Liq. Cryst., 4:133.

    Article  Google Scholar 

  19. Dong, R.Y., and Shen, X. (1997), J. Phys. Chem. A, 101:4673.

    Article  CAS  Google Scholar 

  20. Nordio, PL., and Busolin, P. (1971), J. Chem. Phys., 55:5485.

    Article  CAS  Google Scholar 

  21. Nordio, PL., Rigatti, G., and Segre, U. (1972), J. Chem. Phys., 56:2117.

    Article  CAS  Google Scholar 

  22. Nordio, P.L., Rigatti, G., and Segre, U. (1973), Mol. Phys., 25:129.

    Article  CAS  Google Scholar 

  23. Tarroni, R., and Zannoni, C. (1991), J. Chem. Phys., 95:4550.

    Article  CAS  Google Scholar 

  24. Flory, P.J. Statistical Mechanics of Chain Molecules. Interscience, New York, 1969.

    Google Scholar 

  25. Emsley, J.W., Luckhurst, G.R., and Stockley, C.P. (1982), Proc. R. Soc. London Ser. A, 381:117.

    Article  CAS  Google Scholar 

  26. Marčelja, S. (1974), J. Chem. Phys., 60:3599.

    Article  Google Scholar 

  27. Luckhurst, G.R., Zannoni, C., Nordio, P.L., and Segre, U. (1975), Mol. Phys., 30:1345.

    Article  CAS  Google Scholar 

  28. Dong, R.Y. (1991), Phys. Rev. A, 43:4310.

    Article  CAS  Google Scholar 

  29. Caniparoli, J.P., Grassi, A., and Chachaty, C. (1988), Mol. Phys., 63:419.

    Article  CAS  Google Scholar 

  30. Dong, R.Y. (2001), J. Chem. Phys., 114:5897.

    Article  CAS  Google Scholar 

  31. Helfand, E. (1971), J. Chem. Phys., 54:4651.

    Article  Google Scholar 

  32. Skolnick, J., and Helfand, E. (1980), J. Chem. Phys., 72:5489.

    Article  CAS  Google Scholar 

  33. Dong, R.Y., and Cheng, M. (2000), J. Chem. Phys., 113:3466.

    Article  CAS  Google Scholar 

  34. Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. Numerical Recipes. Cambridge University Press, Cambridge, England, 1986.

    Google Scholar 

  35. Dong, R.Y., Carvalho, A., Sebastião, P.J., and Nguyen, H.T. (2000), Phys. Rev. E, 62:3679.

    Article  CAS  Google Scholar 

  36. Dong, R.Y., Chiezzi, L., and Veracini, C.A. (2002), Phys. Rev. E, 65:41716.

    Article  Google Scholar 

  37. Zakharov, A.V., and Dong, R.Y. (2000), Phys. Rev. E, 63:11704.

    Article  Google Scholar 

  38. Ribeiro, A.C., Sebastião, P.J., and Cruz, C. (2001), Mol. Cryst. Liq. Cryst., 362:289.

    Article  CAS  Google Scholar 

  39. Acosta, R., and Pusiol, D. (1999), Phys. Rev. E, 60:1808.

    Article  CAS  Google Scholar 

  40. Ferraz, A., Ribeiro, A.C., and Nguyen, H. (1999), Mol. Cryst. Liq. Cryst., 331:67.

    Article  Google Scholar 

  41. Carvalho, A., Sebastião, P.J., Ribeiro, A.C., Nguyen, H.T., and Vilfan, M. (2001), J. Chem. Phys., 115:10484.

    Article  CAS  Google Scholar 

  42. Mensio, O., Gonzalez, C.E., Pusiol, D.J., Zamar, R.C., and Dong, R.Y. (2002), Physica, 320:416.

    Article  CAS  Google Scholar 

  43. Yoshizawa, A., Yokoyama, A., Kikuzaki, H., and Hirai, T. (1993), Liq. Cryst., 14:513.

    Article  CAS  Google Scholar 

  44. Yoshizawa, A., Kikuzaki, H., and Fukumasa, M. (1995), Liq. Cryst., 18:351.

    Article  CAS  Google Scholar 

  45. Tokumaru, K., Jin, B., Yoshida, S., Takanishi, Y., Ishikawa, K., Takezoe, H., Fukuda, A., Nakai, T., and Miyajima, S. (1999), Jpn. J. Appl. Phys., 38:147.

    Article  CAS  Google Scholar 

  46. Tansho, M., Onoda, Y., Kato, R., Kutsumizu, S., and Yano, S. (1988), Liq. Cryst., 24:525.

    Article  Google Scholar 

  47. Dong, R.Y. (2001), Mol. Phys., 99:637 and references therein.

    Article  CAS  Google Scholar 

  48. Quist, P.-O., Halle, B., and Furó, I. (1991), J. Chem. Phys., 95:6945.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dong, R.Y. (2003). Spin Relaxation in Orientationally Ordered Molecules. In: Burnell, E.E., de Lange, C.A. (eds) NMR of Ordered Liquids. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0221-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0221-8_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6305-2

  • Online ISBN: 978-94-017-0221-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics