Skip to main content

Very Flexible Solutes: Alkyl Chains and Derivatives

  • Chapter
NMR of Ordered Liquids

Abstract

A detailed understanding of intermolecular interactions in liquid crystals at the atomistic level should enable us to understand how this delicate state of orientationally ordered, fluid matter manifests itself in such a wide variety of molecular structures. However, as emphasized in the preceding Chapter (Chapter 12), the information that can be extracted with nuclear magnetic resonance (NMR) is extremely limited: we are only able to take the most rudimentary steps towards characterizing the various types of contributions that comprise the liquid crystal’s mean field the anisotropic part of the motionally averaged intermolecular interactions that persist in fluids comprised of orientationally ordered molecules. In this Chapter we review approaches to this challenging problem in the physics of liquids by focusing on the way in which flexible solutes (probes that can access distinct conformations) are ordered in nematic liquid crystal solvents. This, in turn, can help characterize the anisotropic part of the intermolecular potential acting on each solute conformer. This potential is derived from the conformer’s interactions with the orientationally ordered solvent molecules and it is designated the potential of mnean torque, V(Ω).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Loewenstein, A., and Brenman, M. (1978), Chem. Phys. Lett., 58:435.

    Article  CAS  Google Scholar 

  2. Snyder, L.C., and Meiboom, S. (1966), J. Chem. Phys., 44:4057.

    Article  CAS  Google Scholar 

  3. Montana, A.J., and Dailey, B.P. (1976), J. Magn. Reson., 22:117.

    CAS  Google Scholar 

  4. Loewenstein, A. (1976), Chem. Phys. Lett., 38:543.

    Article  CAS  Google Scholar 

  5. Snijders, J.G., de Lange, C.A., and Burnell, E.E. (1983), Israel J. Chem., 23:269.

    CAS  Google Scholar 

  6. Levine, Y.K., Birdsall, N.J.M., Lee, A.G., Metcalfe, J.C., Partington, P., and Roberts, G.C.K. (1974), J. Chem. Phys., 60:2890.

    Article  CAS  Google Scholar 

  7. Janik, J.A, Krawczyk, J., Janik, J.M., and Otnes, K. (1979), J. de Physique, Colloque C3, 4D:169.

    Google Scholar 

  8. Emsley, J.W., Khoo, S.K., and Luckhurst, G.R. (1979), Mol. Phys., 37:959.

    Article  CAS  Google Scholar 

  9. Burnell, E.E., de Lange, C.A., and Mouritsen, O.G. (1982), J. Magn. Res., 50:188.

    CAS  Google Scholar 

  10. Flory, P.J. Statistical Mechanics of Chain Molecules. Wiley Interscience, New York, 1969.

    Google Scholar 

  11. Flory, P.J. (1974), Macromolecules, 7:381.

    Article  CAS  Google Scholar 

  12. Photinos, D.J., Samulski, E.T., and Terzis, A.F. (1992), J. Phys. Chem., 96:6979.

    Article  CAS  Google Scholar 

  13. Saupe, A., and Englert, G. (1963), Phys. Rev. Lett., 11:462.

    Article  CAS  Google Scholar 

  14. Luz, Z. (1983), Israel J. Chem., 23:305.

    CAS  Google Scholar 

  15. Rowell, J.C., Phillips, W.D., Melby, L.R., and Panar, M. (1965), J. Chem Phys., 43:3442.

    Article  CAS  Google Scholar 

  16. Seelig, J. (1977), Q. Rev. Biophys., 10:353.

    Article  CAS  Google Scholar 

  17. Griffith, O.H., and Jost, P.C. Spin Labeling Theory and Applications, L. J. Berliner, Ed., chapter 12. Academic Press, New York, 1976.

    Google Scholar 

  18. Samulski, E.T. (1983), Israel J. Chem., 23:329.

    CAS  Google Scholar 

  19. Hsi, S., Zimmermann, H., and Luz, Z. (1978), J. Chem. Phys., 69:4176.

    Article  Google Scholar 

  20. Boden, N., Bushby, R.J., and Clark, L.D. (1979), Mol. Phys., 38:1683.

    Article  CAS  Google Scholar 

  21. Bos, P.J., Shetty, A., Doane, J.W., and Neubert, M.E. (1980), J. Chem Phys., 73:733.

    Article  CAS  Google Scholar 

  22. Goldfarb, D., Luz, Z., and Zimmermann, H. (1983), Israel J. Chem., 23:341.

    CAS  Google Scholar 

  23. Samulski, E.T., and Dong, R.Y. (1982), J. Chem. Phys., 77:5090.

    Article  CAS  Google Scholar 

  24. Emsley, J.W., Luckhurst, G.R., and Stockley, C.P. (1982), Proc. Roy. Soc. London, Ser. A, 381:117.

    Article  CAS  Google Scholar 

  25. Photinos, D.J., Samulski, E.T., and Toriumi, H. (1991), J. Chem. Phys., 94:2758.

    Article  CAS  Google Scholar 

  26. Samulski, E.T., and Toriumi, H. (1983), J. Chem. Phys., 79:5194.

    Article  CAS  Google Scholar 

  27. Photinos, D.J., Luz, Z., Zimmermann, H., and Samulski, E.T. (1993), J. Am. Chem. Soc., 115:10895.

    Article  CAS  Google Scholar 

  28. Samulski, E.T. (1980), Ferroelectrics, 30:83.

    Article  CAS  Google Scholar 

  29. Photinos, D.J., Samulski, E.T., and Toriumi, H. (1990), J. Phys. Chem., 94:4688.

    Article  CAS  Google Scholar 

  30. Photinos, D.J., Samulski, E.T., and Toriumi, H. (1990), J. Phys. Chem., 94:4694.

    Article  CAS  Google Scholar 

  31. Rosen, M.E., Rucker, S.P., Schmidt, C., and Pines, A. (1993), J. Phys. Chem., 97:3858.

    Article  CAS  Google Scholar 

  32. Photinos, D.J., Janik, B., Samulski, E.T., Terzis, A.F., and Toriumi, H. (1991), Mol. Phys., 72:333.

    Article  CAS  Google Scholar 

  33. Photinos, D.J., Samulski, E.T., and Terzis, A.F. (1992), J. Phys. Chem., 96:6979.

    Article  CAS  Google Scholar 

  34. Photinos, D.J., Poon, C.-D., Samulski, E.T., and Toriumi, H. (1992), J. Phys. Chem., 96:8176.

    Article  CAS  Google Scholar 

  35. Photinos, D.J., and Samulski, E.T. (1993), J. Chem. Phys., 98:10009.

    Article  CAS  Google Scholar 

  36. Photinos, D.J., Samulski, E.T., and Toriumi, H. (1992), J. Chem. Soc. Faraday Trans., 88:1875 and references cited therein.

    Article  CAS  Google Scholar 

  37. Serpi, H.S., and Photinos, D.J. (1996), J. Chem. Phys., 105:1718.

    Article  CAS  Google Scholar 

  38. Marčelja, S. (1974), J. Chem Phys., 60:3599.

    Article  Google Scholar 

  39. Greenfield, M.S., Vold, R.L., and Vold, R.R. (1985), J. Chem. Phys., 83:1440.

    Article  CAS  Google Scholar 

  40. Janik, B., Samulski, E.T., and Toriumi, H. (1987). J. Phys. Chem.. 91:1842.

    Article  CAS  Google Scholar 

  41. Boden, N., Bushby, R.J., Clark, L.D., Emsley, J.W., Luckhurst, G.R., and Stockley, C.P. (1981), J. Chem. Soc. Perkin Trans., 2:928.

    Google Scholar 

  42. Emsley, J.W., and Turner, D.L. (1981), J. Chem. Soc. Faraday Trans. 2, 77:1493.

    Article  CAS  Google Scholar 

  43. Anderson, J.M. (1971), J. Magn. Reson., 4:231.

    CAS  Google Scholar 

  44. Catalano, D., Forte, C., Veracini, C.A., and Zannoni, C. (1983), Israel J. Chem., 23:283.

    CAS  Google Scholar 

  45. Hoatson, G.L., Bailey, A.L., van der Est, A.J., Bates, G.S., and Burnell, E.E. (1988), Liq.Cryst., 3:683.

    Article  CAS  Google Scholar 

  46. Photinos, D.J., Samulski, E.T., and Toriumi, H. (1991), Mol. Cryst. Liq. Cryst., 204:161.

    Article  CAS  Google Scholar 

  47. Luzar, M., Rosen, M.E., and Caldarelli, S. (1996), J. Phys. Chem., 100:5098.

    Article  CAS  Google Scholar 

  48. Alejandre, J., Emsley, J.W., and Tildesley, D.J. (1994), J.Chem. Phys., 101:7027.

    Article  Google Scholar 

  49. La Penna, J., Foord, E.K., Emsley, J.W., and Tildesley, D.J. (1995), J. Chem. Phys., 104:233.

    Article  Google Scholar 

  50. Marčelja, S. (1974), Biochim. Biophys. Acta, 367:166.

    Google Scholar 

  51. Vanakaras, A.G., and Photinos, D.J. (1995), Mol. Cryst. Liq. Cryst., 262:463.

    Article  Google Scholar 

  52. Terzis, A.F., Photinos, D.J., and Samuiski, E.T. (1997), J. Chem. Phys., 107:4061.

    Article  CAS  Google Scholar 

  53. Abe, A., Fuyura, H. (1988), Mol. Cryst. Liq. Cryst., 159:99.

    CAS  Google Scholar 

  54. Zanonni, C. Nuclear Magnetic Resonance of Liquid Crystals, J.W. Emsley, Ed., chapter 2. Reidel, Dordrecht, 1985.

    Google Scholar 

  55. Berardi, R., Spinozzi, F., and Zanonni, C. (1998), Chem. Phys. Leu., 260:3742.

    Google Scholar 

  56. Berardi, R., Spinozzi, F., and Zanonni, C. (1996), J. Chem. Phys., 109:633.

    Google Scholar 

  57. Ferrarini, A., Moro, G.J, Nordio, P.L., and Luckhurst, G.R. (1992), Mol. Phys., 77:1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Samulski, E.T. (2003). Very Flexible Solutes: Alkyl Chains and Derivatives. In: Burnell, E.E., de Lange, C.A. (eds) NMR of Ordered Liquids. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0221-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0221-8_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6305-2

  • Online ISBN: 978-94-017-0221-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics