Skip to main content

Molecular Theory of Orientational Order

  • Chapter

Abstract

NMR experiments in ordered fluids can provide values of time averages of nuclear spin interactions such as dipole-dipole, electric quadrupole and chemical shift. From these one can evaluate second rank orientational order parameters pertaining to the various nuclear sites (chemical shifts) or pairs of sites (dipolar couplings) or mole cular segments (quadrupolar splittings) [1], Such order parameters are useful mainly because:

  1. (i)

    they provide quantitative measures of molecular orientational ordering from which information on the symmetry and structure of the ordered fluid as well as on certain physicochemical processes taking place therein, can be obtained;

  2. (ii)

    they can be used for molecular structure determination, either of the molecules forming the ordered fluid phase itself or of molecules dissolved therein;

  3. (iii)

    they can provide information on the underlying molecular interactions from which insights can be gained on molecular structure - macroscopic property relations in ordered fluids.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dong, R.Y. Nuclear Magnetic Resonance of Liquid Crystals, chapter 2. Springer-Verlag, Berlin, 1994; Chapter 1 in the present book.

    Book  Google Scholar 

  2. Rosen, M.E., Rucker, S.R, Schmidt, C, and Pines, A. (1993), J. Phys. Chem., 97:3858.

    Article  CAS  Google Scholar 

  3. In the case of non-rigid molecules, the symmetry is understood in the statistical sense, i.e. each conformation occurs with the same probability as its mirror-image.

    Google Scholar 

  4. Karahaliou, P.K., Vanakaras, A.G., and Photinos, D.J. (2002), Phys. Rev., E 65:31712.

    Article  CAS  Google Scholar 

  5. Luz, Z.,Goldfarb, D., and Zimmermann, H. (1985), Nuclear Magnetic Resonance ofLiquid Crystals, edited by J.W. Emsley. D. Reidel Publishing Co., Dordrecht: Chap. 14.

    Google Scholar 

  6. Merlet, D., Emsley, J.W., Lesot, P., and Courtieu, J. (1999), J.Chem. Phys., 111:6890.

    Article  CAS  Google Scholar 

  7. Photinos, D.J., Samulski, E.T., and Toriumi, H. (1990), J. Phys. Chem., 94:4688.

    Article  CAS  Google Scholar 

  8. Berardi, R., Spinozzi, E, and Zanonni, C. (1998), Chem. Phys. Lett., 260: 3742.

    Google Scholar 

  9. Terzis, A.F., and Photinos, D.J. (1994), Mol. Phys., 83:847.

    Article  CAS  Google Scholar 

  10. Alejandre, J., Emsley, J.W., and Tildesley, D.J. (1994), J. Chem. Phys., 101:7027.

    Article  Google Scholar 

  11. La Penna, J., Foord, E.K., Emsley, J.W., and Tildesley, D.J. (1995), J. Chem. Phys., 104:233.

    Article  Google Scholar 

  12. Vanakaras, A.G., and Photinos, D.J. (1995), Mol. Phys., 85:1089.

    Article  CAS  Google Scholar 

  13. Vanakaras, A.G., and Photinos, D.J. (1995), Mol. Cryst. Liq. Cryst., 262: 463.

    Article  Google Scholar 

  14. Vanakaras, A.G., and Photinos, D.J. (2001), J. Mater. Chem., 11: 2832.

    Article  CAS  Google Scholar 

  15. Poison, J.M., and Burnell, E.E. (1997), Phys. Rev., E 55:4321.

    Article  Google Scholar 

  16. Kok, M.Y., van der Est, A.J., and Burnell, E.E. (1988), Liquid Crystals, 3:485.

    Article  CAS  Google Scholar 

  17. Straley, J.P. (1973), Phys. Rev., A 10:1881.

    Article  Google Scholar 

  18. Janik, B., Samulski, E.T., and Toriumi, H. (1987), J. Phys. Chem., 91: 1842.

    Article  CAS  Google Scholar 

  19. Samulski, E.T., and Dong R.Y. (1982), J.Chem. Phys., 77:5090.

    Article  CAS  Google Scholar 

  20. Samulski, E.T., and Toriumi, H. (1983), J. Chem. Phys., 79:5194.

    Article  CAS  Google Scholar 

  21. Ferrarini, A., Moro, G.J., Nordio, PL., and Luckhurst, G.R. (1992), Mol. Phys., 77:1.

    Article  Google Scholar 

  22. Photinos, DJ., Samulski, E.T., and Toriumi, H. (1991), Mol Cryst. Liq. Cryst., 204:161.

    Article  CAS  Google Scholar 

  23. Burnell, E.E, and de Lange, CA. (1998), Chem. Rev., 98: 2359.

    Article  CAS  Google Scholar 

  24. Terzis, A.F., Photinos, D.J., and Samulski, E.T. (1997), J.Chem. Phys., 107:4061.

    Article  CAS  Google Scholar 

  25. Photinos, D.J., Samulski, E.T, and Toriumi, H. (1992), J. Chem. Soc. Faraday Trans., 88:1875

    Article  CAS  Google Scholar 

  26. Photinos, D.J., Luz, Z., Zimmermann, H., and Samulski, E.T. (1993), J. Am. Chem. Soc, 115:10895.

    Article  CAS  Google Scholar 

  27. Serpi, H.S., and Photinos, DJ. (1996), J. Chem. Phys., 105:1718.

    Article  CAS  Google Scholar 

  28. Marcelja, S. (1974), J. Chem Phys., 60:3599.

    Article  CAS  Google Scholar 

  29. Emsley, J.W., Luckhurst, G.R., and Stockley, C.P. (1982), Proc. Roy. Soc. London, Ser. A, 381:117.

    Article  CAS  Google Scholar 

  30. Strieb, B., Callen, H.B., and Orwitz, G. (1963), Phys. Rev., 103:1798.

    Article  Google Scholar 

  31. Sluckin, T.J. (1983), Mol. Phys. ,49:221.

    Article  CAS  Google Scholar 

  32. Singh, Y. (1984), Phys. Rev., A 30:583.

    Article  CAS  Google Scholar 

  33. Terzis, A.F., Poon, C-D., Samulski, E.T, Luz, Z., Poupko, R., Zimmermann, H., Müller, K., Toriumi H., and Photinos, D.J. (1996), J. Am. Chem. Soc, 118:2226.

    Article  CAS  Google Scholar 

  34. Parsons, J.D. (1979), Phys. Rev., A 19:1225.

    Article  Google Scholar 

  35. Lee, S.D. (1987), J. Chem. Phys., 87:4972.

    Article  CAS  Google Scholar 

  36. Onsager, L. (1949), Ann. N.Y.Acad. Sei, 51:672.

    Article  Google Scholar 

  37. Vroege, G.J., and Lekkerkerker, H.N.W. (1992), Rep. Prog. Phys., 55:1241.

    Article  CAS  Google Scholar 

  38. Cotter, M.A. (1978), The Molecular Physics of Liquid Crystals, Gray, G.W., and Luckhurst, G.R., Editors, Plenum Press, New York.

    Google Scholar 

  39. Gelbart, W.M. (1982), J. Phys. Chem., 86:4298.

    Article  CAS  Google Scholar 

  40. Maier, W., and Saupe, A. (1959), Z. Naturforsch, 14A:882; ibid (1960), 15A:287.

    CAS  Google Scholar 

  41. Frenkel, D., and Mulder, B.M. (1985), Mol. Phys., 55:1171.

    Article  CAS  Google Scholar 

  42. Frenkel, D. (1987), Mol. Phys., 60:1.

    Article  CAS  Google Scholar 

  43. Allen, M.P., Evans, T.G., Frenkel, D., and Mulder, B.M. (1993), Adv. Chem. Phys., 86:1.

    Article  CAS  Google Scholar 

  44. Tschierske, C. (2001), J. Mater. Chem., 11:2647 and references therein.

    Article  CAS  Google Scholar 

  45. Photinos, D.J., Poon, C.-D., Samulski, E.T., and Toriumi, H. (1992), J. Phys. Chem., 96:8176.

    Article  CAS  Google Scholar 

  46. McGrother, S.C., Gil-Villegas, A., and Jackson, G. (1996), J. Phys: Condens. Mat., 8:9649.

    Article  CAS  Google Scholar 

  47. Hardouin, F., Levelut, A.M., Achard, M.F., and Sigaud, G. (1983), J. Chim. Phys., 80:53.

    CAS  Google Scholar 

  48. Berardi, R., Orlandi, S., Photinos, DJ., Vanakaras, A.G., and Zannoni, C. (2002), Phys. Chem. Chem. Phys., 4:770.

    Article  CAS  Google Scholar 

  49. de Jeu, W.H. (1983), Phil. Trans. R. Soc. Lond. A, 309:217.

    Article  Google Scholar 

  50. Dunmur, D.A., and Toriyama, K. (1988), Liquid Crystals, 1:169.

    Article  Google Scholar 

  51. Cladis, P.E. (1988), Mol Cryst. Liq. Cryst., 165:85.

    CAS  Google Scholar 

  52. Ylihautala, M., Ingman, P., Jokisaari, J., and Diehl, P. (1996), Appl. Spectrosc, 50:1435.

    Article  CAS  Google Scholar 

  53. See for example Demus, D. (1998), Handbook of Liquid Crystals, Vol.1, edited by D. Demus, J.W. Goodby, G.W. Gray, H.W. Spiess, and V. Vill, (Wiley-Vch, NY): page 169 and references therein.

    Google Scholar 

  54. Allen, M.P. (1994), Mol. Phys., 81:263.

    Article  Google Scholar 

  55. Emerson, A.P., Hashim, R., and Luckhurst, G.R. (1992), Mol. Phys., 76:241.

    Article  Google Scholar 

  56. Célèbre, G. (2001), J. Chem. Phys., 115:9552.

    Article  Google Scholar 

  57. Abe, A., and Fuyura, H. (1988), Mol. Cryst. Liq. Cryst., 159:99.

    CAS  Google Scholar 

  58. Emsley, J.W., Heeks, S.K., Home, T.J., Howells, M.H., Moon, A., Palke, W.E., Patel, S.U., Shilstone, G.N., and Smith, A. (1991), Liquid Crystals, 9:649.

    Article  CAS  Google Scholar 

  59. van der Est, A.J., Kok, M.Y., and Burnell, E.E. (1987), Mol. Phys., 60:397.

    Article  Google Scholar 

  60. Yim, C.T., and Gilson, D.F.R. (1991), J. Phys. Chem., 95:980.

    Article  CAS  Google Scholar 

  61. Syvitski R.T., and Burnell, E.E. (2000), J. Chem. Phys., 113:3452.

    Article  CAS  Google Scholar 

  62. Photinos, D.J., and Samulski, E.T. (1993), J. Chem. Phys., 98:10009.

    Article  CAS  Google Scholar 

  63. van Leeuwen, M.E., and Smit, B. (1993), Phys. Rev. Lett., 69:913.

    Google Scholar 

  64. Weis, J.J., Levesque, D., and Zarragoicoechea, G.J. (1993), Phys. Rev. Lett., 69:913.

    Article  Google Scholar 

  65. Sear, R.P. (1996), Phys. Rev. Lett., 76:2310.

    Article  CAS  Google Scholar 

  66. Berardi, R., Ricci, M., and Zannoni, C. (2001), Chem. Phys. Chem., 2:443.

    Article  CAS  Google Scholar 

  67. Burnell, E.E., Berardi, R., Syvitski, R.T., and Zannoni, C. (2000), Chem. Phys. Lett., 331:455.

    Article  CAS  Google Scholar 

  68. Wilson, M.R. (1994), Mol. Phys., 81:675.

    Article  CAS  Google Scholar 

  69. Dingemans, T., Photinos, D.J., Samulski, E.T., Terzis, A.F., and Wutz, C. (2003), J. Chem. Phys., (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Photinos, D.J. (2003). Molecular Theory of Orientational Order. In: Burnell, E.E., de Lange, C.A. (eds) NMR of Ordered Liquids. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0221-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0221-8_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6305-2

  • Online ISBN: 978-94-017-0221-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics