Skip to main content

Detoxification of Pollutants from Municipal Wastewater Using Organic Soil as a Biofilter

  • Conference paper
New Horizons in Biotechnology
  • 569 Accesses

Abstract

The following studies were performed on Eutric Histosol fields (9 fields, each 0.35 ha in area) with different plant covers (Salix americana, Populus alba and grass mixture) and drain system at a depth of 100 cm. The fields were irrigated 10 times per vegetation season by surface flooding technique with municipal wastewater after two-step (mechanical and biological) treatment. The experimental fields were equipped with porous cups for extraction of soil solution. Probes were installed at depths of 10, 20, 50, 70 and 100 cm. Three irrigation treatments were applied for each plant cover. The control treatment (A) received only water from precipitation (about 600 mm per year). The single dose treatment received 60 mm (B) and the double treatment (C) — 120 mm of wastewater each time. Wastewater introduced to the fields contained about 25 g N-NO-3 m-3, 5 g P m-3 and some amounts of heavy metals among which Zn and Cd dominated. It was found that nitrate content in the recharge water was reduced to 7–14 g m-3 and that of total P — down to 0.8 g P m-3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ganguli A., Tripathi A.K. (1999) Lett. Appl. Microbiol. 28, 76–80.

    Article  PubMed  CAS  Google Scholar 

  2. Patterson J.W. (1977) Waste Water Treatment, Science Publishers, New York.

    Google Scholar 

  3. Xing, L., Okrent D. (1993) J. Hazad. Mater. 38, 363–384.

    Google Scholar 

  4. Szulczewski M.D., Helmke P.A., Bleam W.F. (1997) Environ. Sci. Technol. 31, 2954–2959.

    Article  CAS  Google Scholar 

  5. Shen H., Wang, Y.T. (1993) Appl. Environ. Microbiol. 59, 3771–3777.

    PubMed  CAS  Google Scholar 

  6. Rajamani S., Ramasami T., Langerwerf J.S.A., Schappman J.E. (1995) in Proceedings of 3rd International Conference on appropriate waste management technologies for developing countries, Nagpur, India, pp. 965–973.

    Google Scholar 

  7. Pandey R., Ghosh S. (2000) in Estimating industrial pollution in India: Implications for an effluent change, National Institute of Public Finance and Policy, New Delhi.

    Google Scholar 

  8. Bhide J.V., Dhakephalkar P.K., Paknikar K.M. (1996) Biotechnol. Lett. 18, 667–672.

    Article  CAS  Google Scholar 

  9. Environmental Protection Agency (1979) in USEPA technology transfer report, EPA 625/5–79016, June.

    Google Scholar 

  10. Gadd G.M., White C. (1993) Trends Biotechnol. 11, 353–359.

    Article  PubMed  CAS  Google Scholar 

  11. Akhtar M.N., Mohan P.M. (1995) Curr. Sci. 69, 1028–1030.

    Google Scholar 

  12. Garnham G.W., Codd G.A., Gadd G.M. (1993) Appl. Microbiol. Biotechnol. 39, 666–672.

    Article  CAS  Google Scholar 

  13. Kratochvil D., Pimentel P., Volesky B. (1998) Environ. Sci. Technol. 32, 2693–2698.

    Article  CAS  Google Scholar 

  14. Marques A.M., Roca X., Simon-Pujol M.D., Fuste M.C., Congregado F. (1991) Appl. Microbiol. Biotechnol. 35, 406–410.

    Article  CAS  Google Scholar 

  15. Andres Y., Thouand G., Boualam M., Mergeay M. (2000) Appl. Microbiol. Biotechnol. 54, 262–267.

    Article  PubMed  CAS  Google Scholar 

  16. Merrin J.S., Sheela R., Saswathi N., Prakasham R.S., Ramakrishna S.V. (1998) Indian J. Exptl. Biol. 36, 1052–1055.

    CAS  Google Scholar 

  17. Prakasham R.S., Merrie J.S., Sheela R., Saswathi N., Ramakrishna S.V. (1999) Environ. Pollut. 104, 421–427.

    Article  CAS  Google Scholar 

  18. Mattuschka B., Junghans K., Straube G. (1993) in Biohydrometallurgical Technologies, vol. 2, Torma A.E., Apel M.L. and Brierley C.L., eds., The Mineral, Metals and Materials Society, Warrendale, PA, pp. 125–132.

    Google Scholar 

  19. Niu H., Xu X.S., Wang J.H., Volesky B. (1993) Biotechnol. Bioeng. 42, 785–777.

    Article  PubMed  CAS  Google Scholar 

  20. Verma T., Srinath T., Gadpayale R., Ramteke P.W., Hans R.K., Garg S.K. (2001) Biores. Technol. 78, 31–35.

    Article  CAS  Google Scholar 

  21. Sharma D.C., Forster C.F. (1994) Biores. Technol. 47, 257–264.

    Article  CAS  Google Scholar 

  22. Poots V.J.P., McKay G., Healy J.J. (1978) J. Water Pollut. Control 50, 926–934.

    CAS  Google Scholar 

  23. Sharma D.C., Forster C.F. (1993) Water Res. 27, 1201–1208.

    Article  CAS  Google Scholar 

  24. Sharma D.C., Forster C.F. (1994) Biores. Technol. 49, 31–40.

    Article  CAS  Google Scholar 

  25. Huang C.P., Wu M.H. (1977) Water Res. 11, 673–679.

    Article  CAS  Google Scholar 

  26. Al-Asheh S., Dunjak Z. (1995) Biotechnol. Prog. 11, 638–642.

    Article  PubMed  CAS  Google Scholar 

  27. De Rome L., Gadd G.M. (1987) Appl. Microbiol. Biotechnol. 26, 84–90.

    Article  Google Scholar 

  28. Fourest E., Roux J.C. (1992) Appl. Microbiol. Biotechnol. 37, 399–403.

    Article  CAS  Google Scholar 

  29. Antuner A.P.M., Watkins G.M., Duncan J.R. (2001) Biotechnol. Lett. 23, 249–251.

    Article  Google Scholar 

  30. Puranik P.R., Paknikar K.M. (1999) Biotechnol. Prog. 15, 228–237.

    Article  PubMed  CAS  Google Scholar 

  31. Sag Y., Kutsal T. (1996) Process Biochem. 31, 573–585.

    Article  CAS  Google Scholar 

  32. Ref 24

    Google Scholar 

  33. Lemly A.D., Ohlendorf H.M. (2002) Ecotoxicology and Environmental Safety, 52 (1): 46–56.

    Article  PubMed  CAS  Google Scholar 

  34. van de Graaff R.H.M, Suter H.C, Lawes S.J. (2002) Journal of Environmental Science and Health 37 (4): 745–757.

    Article  PubMed  Google Scholar 

  35. Phillips I.R. (2002) Australian Journal of Soil Research 40 (3): 515–532.

    Article  Google Scholar 

  36. Obarska-Pempkowiak H. (1991) in: Ecological Engineering for Wastewater Treatment, Etnier C. and Guaterstarm B. (Eds.)., Bakskogen, Szwecja, 239–247.

    Google Scholar 

  37. Kotowski M., Stepniewska Z., Saczuk M., Kotowska U., Pasztelan M. (1999). Acta Agrophysica, 22, 93–113.

    Google Scholar 

  38. Glieski J., Stepniewski W. (1985) Soil Aeration and its Role for Plants. CRC Press, Boca Raton, Florida, USA.

    Google Scholar 

  39. Reddy K. R., Saccon P.D., Graetz D.A., (1980) J. Environ. Qual, 9, 283–288.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Stepniewska, Z., Kotowska, U. (2003). Detoxification of Pollutants from Municipal Wastewater Using Organic Soil as a Biofilter. In: Roussos, S., Soccol, C.R., Pandey, A., Augur, C. (eds) New Horizons in Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0203-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0203-4_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6468-4

  • Online ISBN: 978-94-017-0203-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics