Skip to main content
  • 128 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Aero E.L., Bulygin A.N., Kuvshinsky E.V. Asymmetric hydrodynamics. J. Appl. Math. Mech. (PMM), v. 29, # 2 (1964).

    Google Scholar 

  2. Aero A.L., Bulygin A.N. Hydromechanics of liquid crystals. Advances (Itogi) in Science and Technology: Hydromechanics, v. 7, Moscow: VINITI (1973).

    Google Scholar 

  3. Afanasiev E.F., Nikolaevskiy V.N. On the development of asymmetrical suspension hydrodynamics with rotating solid particles. In: Problems of Hydromechanics and Continuum Mechanics (the Sedov’s 60-th Anniversary). SIAM, Philadelphia, 16 – 26 (1969).

    Google Scholar 

  4. Ahmadi G., Koh S.L., Goldschmid V.M. A theory of nonsimple microfluids. In: Recent Advances in Engineering Science. V. 5, part 2. Gordon and Breach, New York, 9 – 20 (1970).

    Google Scholar 

  5. Ahmadi G., Goldschmid V.M., Dean B. A model of incompressible turbulent shear flow. Iranian J. Sci. Technol., v. 5, # 4, 147 –158 (1976).

    Google Scholar 

  6. Allen S.J., Kline K.A., Ling C.C. Transient shear flow of fluids with deformable microstructure. Acta Mech., v. 18, 1–20 (1973).

    Article  Google Scholar 

  7. Arsen’ev S.A., Nikolaevskiy V.N. Vertical structure of oceanic currents at the Equator with regards for mesoscale vortices. Doklady Earth Sciences (DAN), v. 377A, # 3, 365 – 367 (2001).

    Google Scholar 

  8. Arseniev S.A., Nikolaevskiy V.N. Turbulent-vortex flows in channels and heat-coolers of atomic energy stations. Atomic Energy, v.90, # 5 (2001).

    Google Scholar 

  9. Arseniev S.A., Nikolaevskiy V.N., Shelkovnikov N.K. Tornado: origin, evolution and stability. Vestnik MGU. Ser. 3: Physics and Astronomy, #1, 50 – 53 (2000).

    Google Scholar 

  10. Artemov M.A., Nikolaevskiy V.N. On equations of asymmetric turbulence in magneto-hydrodynamics. Letters in Appl. Engng Sci., v. 4, # 3, (1976).

    Google Scholar 

  11. Artemov M.A., Ivchenko V.O., Nikolaevskiy V.N. On parameterization of mesoscale eddies in numerical models of large-scale oceanic circulation. Proc. Arctic’s and Antarctic’s Institute. V. 387. Leningrad: Gidrometeoizdat (1982).

    Google Scholar 

  12. Atkin R.J., Fox N. A multipolar approach to liquid helium II. Acta Mechanica, v.21, 221– 239 (1975).

    Google Scholar 

  13. Atkin R.J., Fox N. Acoustic wave propagation in liquid helium II. J. Sound and Vibration, v. 42, # 1, 13 – 29 (1975).

    Google Scholar 

  14. Babkin V. A. Anisotropic turbulence of incompressible fluid flow between plane parallel walls. J. A.pl. Math. Mech. (PMM), v.49, # 3 (1985).

    Google Scholar 

  15. Babkin V. A. Anisotropic turbulence at incompressible fluid flow between coaxial rotating cylinders. J. A.pl. Math. Mech. (PMM), v.52, # 2 (1988).

    Google Scholar 

  16. Babkin V.A. Turbulent stream in a wall zone as a flow of anisotropie fluid. Eng.-Phys. J. (Minsk), v. 75, # 5, 69 – 73 (2002).

    Google Scholar 

  17. Barenblatt G.I., Zeldovich Ya. B. Self-similar solutions as intermediate asymptotics. Annual Review of Fluid Mechanics. V. 4, 285 – 312 (1972).

    Google Scholar 

  18. Bagriantzev N.V., Danilov A.I., Ivchenko V.O., Nikolaevsky V.N. Orientation effects in geophysical fluid dynamics. Int. J. Eng. Sci., v. 21, # 7 (1983).

    Google Scholar 

  19. Batchelor G. K. The theory of axisymmetric turbulence. Proc. Roy. Soc. London, Al 86, 480 – 502 (1946).

    Google Scholar 

  20. Batchelor G.K. The Theory of Homogeneous Turbulence. Cambridge University Press (1953).

    Google Scholar 

  21. Batchelor G.K. An Introduction to Fluid Dynamics. Cambridge University Press. (1970).

    Google Scholar 

  22. Batchelor G.K. The stress system in a suspension of free force particles. J. Fluid Mech., v. 41, pt 3, 545 – 570 (1970).

    Google Scholar 

  23. Bear J. Dynamics of Fluids in Porous Media. New York: Elsevier (1972).

    Google Scholar 

  24. Bengitson L., Lighthill J., Eds. Intense Atmospheric Vortices. Springer-Verlag, New York (1982).

    Google Scholar 

  25. Beran M.J. Statistical Continuum Theories. New York: Interscience (1968).

    Google Scholar 

  26. Beresnev I.A., Nikolaevskiy V.N. A model for nonlinear seismic waves in a medium with instability. Physics D, v. 66, 1– 6 (1993).

    Google Scholar 

  27. Berezin Yu. A., Trofimov V.M. Thermal convection in a non-equilibrium turbulent medium with rotation. Fluid Dynamics, v. 29, # 6 (1994).

    Google Scholar 

  28. Berezin Yu. A., Trofimov V.M. A model of non-equilibrium turbulence with an asymmetric stress. Application to the problems of thermal convection. Continuum Mech. Thermodynamics, v. 7, 415 – 437 (1995).

    Google Scholar 

  29. Berezin Yu. A., Trofimov V.M. Large-scale vortex generation driven by non-equilibrium turbulence. Fluid Dynamics. V. 31, # 1 (1996).

    Google Scholar 

  30. Birch S.F., Lebedev A.B., Lyubimov D.A., Secundov A.N. Modeling of turbulent 3D jet and boundary layer streams. Fluid Dynamics, # 5 (2001).

    Google Scholar 

  31. Birkhoff G., Zarantanello E.H. Jets, Wakes and Cavities. New York: Acad. Press, (1957).

    Google Scholar 

  32. Blackwelder R.F., Kovasznay L.S.G. Time scales and correlations in a turbulent boundary layer. Phys. Fluids, v.9, # 9 (1972).

    Google Scholar 

  33. Brenner H. Rheology of two-phase systems. Annual Review Fluid Mechanics, v. 2, 137 – 176 (1975).

    Google Scholar 

  34. Brekhovskikh L.M. et al. Some results of hydrophysical experiment at ground of Tropical Atlantics. Trans. USSR Acad. Sci. (Izvestia) Physics of Atmosphere and Ocean, v.7, # 5 (1971).

    Google Scholar 

  35. Bubnov V.A., Martynenko O.G., Kaliletz V.I., Ustok H.Z. Radial force of isolated vortex Minsk, Inst. Heat - Mass Exchange, 21 p. (1987).

    Google Scholar 

  36. Buevich Y.A., Nikolaevskiy V.N. Equations for moments of averaged turbulence with anisotropy of vortex type. Proc. USSR Acad. Sci. (DAN), v. 201, # 2, 288 – 291 (1971).

    Google Scholar 

  37. Buevich Yu. A., Nikolaevskiy V.N. Theory of turbulence with anisotropy of eddy type. In: Continuum Mechanics and Related Problems of Analysis. (The N.I. Muskhelishvili’s 80th anniversary). Moscow, Nauka (1972).

    Google Scholar 

  38. Busse F. H. Magnetohydrodynamics of the Earth’s dynamo. Annual Review of Fluid Mechanics. V. 10, 435 – 462 (1978).

    Google Scholar 

  39. Cantwell B. J. Organized motion in turbulent flow. Annual Review Fluid Mechanics, v. 13, 457 – 515 (1981).

    Google Scholar 

  40. Chandrasekhar S. The theory of axisymmetric turbulence. Phil. Trans. Roy. Soc. London, A242, 557 – 577 (1950).

    Google Scholar 

  41. Chandrasekhar S. The decay of axisymmetric turbulence. Proc. Roy. Soc. London, A203, 358 – 364 (1950).

    Google Scholar 

  42. Chandrasekhar S. Liquid Crystals. Cambridge University Press (1977).

    Google Scholar 

  43. Charney J.G. Geostrophic turbulence. J. Atmos. Sci., v. 28, 1087 –1095 (1971).

    Google Scholar 

  44. Charney J.G. Nonlinear theory of a wind driven homogeneous layer near the Equator. Deep-Sea Res., v.6, # 4, 303 – 310 (1960).

    Google Scholar 

  45. Chevray R. The turbulent wake of a body of revolution. Trans. Amer. Mech. Eng., ser D (J. Basic Engng.), v.90, # 2 (1968).

    Google Scholar 

  46. Chevray R., Kovasznay L.G.S. Turbulence measurements in the wake of a thin plate. AIAA J., v.7, # 8 (1969).

    Google Scholar 

  47. Chimonas G., Hauser H.M. The transfer of angular momentum from vortices to gravity swirl waves. J. Atmos. Sci., v. 54, 1701–1711 (1997).

    Google Scholar 

  48. Comte-Bellot G. Ecoulement Turbulent Entre Deux Parois Paralleles. Edite Scient. Techn. Paris (1965).

    Google Scholar 

  49. Condiff D.W., Brenner H. Transport mechanics in the system of orientable particles. Physics of Fluids, v. 12, # 3, 539 – 551 (1969).

    Google Scholar 

  50. Condiff D.W., Dahler J.S. Fluid mechanical aspects of antisymmetric stress. Physics of Fluids, v.7, # 6, 842 – 854 (1964).

    Google Scholar 

  51. Corino E.R., Brodkey R.S. A visual investigation of the wall region in turbulent flow. J. Fluid Mech., v. 37, # 1, 1–30 (1969).

    Article  Google Scholar 

  52. Corrsin S. Limitations of gradient transport models in random walks and in turbulence. Advances in Geophysics. V. 18A, 25 – 60 (1974).

    Google Scholar 

  53. Corrsin S., Kistler A. Free-steam boundaries of turbulent flows. NASA Report 1244 (1965).

    Google Scholar 

  54. Cosserat E. et F. Theorie des Corps Deformables. Paris: Herman (1909).

    Google Scholar 

  55. Cox J. P. Theory of Stellar Pulsation. Princeton University Press (1980).

    Google Scholar 

  56. Dahler J.S. Transport phenomena in a fluid composed of diatomic molecules. J. Chem. Phys., v. 30, p. 1447 (1959).

    Google Scholar 

  57. Dahler J.S., Scriven L. Angular momentum of continua. Nature, # 4797, Oct. 7 (1961).

    Google Scholar 

  58. Dahler J.S., Scriven L. Theory of structured continua: general consideration of angular momentum and polarization. Proc. Roy. Soc., A275, 504 – 527 (1963).

    Google Scholar 

  59. Daily J.W. Some aspects of flowing suspensions. Proc. IX Midwestern Mechanics Conference. Madison, Wisconsin., August 16–18 (1965).

    Google Scholar 

  60. Daily J.W., Roberts P.R. Rigid particle suspensions in turbulent shear flow: some size effects with spherical particles. Tappi, v. 49, # 3, 115 –125 (1966).

    Google Scholar 

  61. Danilov A.I., Ivchenko V.O., Nikolaevskiy V.N. On large-scale circulation of barotropic ocean with parameterization of synoptic eddies. Proc. USSR Acad. of Sci. (DAN), v.262, # 6 (1982).

    Google Scholar 

  62. Danilov A.I. Non-stationary barotropic circulation with account of action of sub-net scale. Trans. of Arctic and Antarctic Institute, v. 387. Leningrad: Gidrometeoizdat (1982).

    Google Scholar 

  63. De Groot S.R., Mazur P. Non-equilibrium Thermodynamics. Amsterdam: North-Holland (1962).

    Google Scholar 

  64. De Groot S.R., Sattorp L.H. Electrodynamics. Amsterdam, North-Holland (1972).

    Google Scholar 

  65. De Gennes P. G. The Physics of Liquid Crystals. Oxford, Clarendon (1974).

    Google Scholar 

  66. Dopazo C. On conditioned averages for intermittent turbulent flows. J. Fluid Mechanics, v.81, pt 3 (1977).

    Google Scholar 

  67. Dryden H.L. A review of the statistical theory of turbulence (1942). In: “Classic Papers on Statistical Theory”, Friedlander S. K., Topper L., Eds. New York: Interscience, 115 – 150 (1961).

    Google Scholar 

  68. Dryden H.L., Murnaghan F.D., Bateman H. Hydrodynamics. Dover Publications Inc., New York (1956).

    Google Scholar 

  69. Dryden W.A. Effects on the scale of spatial averaging on the kinetic energies of small – scale turbulent motion. J. Meteorology, v. 14, # 4, 287 – 292 (1957).

    Google Scholar 

  70. Eckman J.P. Jarvenpaa E., Jarvenpaa M. Porosities and dimensions of measures. Nonlinearities, v. 13, 1– 18 (2000).

    Google Scholar 

  71. Egger J. Angular momentum of /I - plane flows. J. Atmos. Sci., v. 58, 2502 – 2508 (2001).

    Google Scholar 

  72. Egger J., Hoinka K.-P. Mountain torques and the equatorial components of global angular momentum. J. Atmos. Sci., v. 57, 2319 – 2331 (2000).

    Google Scholar 

  73. Einstein A. Eine neue bestimmung der molekuldimensionen. Annalen der Physik, v. 19, 289 – 306 (1906).

    Google Scholar 

  74. El Telbany M. M. M. and Reynolds A.J. The structure of turbulent plane Couette flow. Transactions of ASME. Journal of Fluids Engineering, v. 104, # 3, 367 – 372 (1982).

    Google Scholar 

  75. Emanuel K.A. The theory of hurricanes. Ann. Rev. Fluid Mech., v. 23, 179 – 196 (1991).

    Google Scholar 

  76. Erechnev D.A. Leontiev D.I., Melnikova O.N. Generation of cylindrical vortexes at a bottom that resists to water flows. Physics of Atmosphere and Ocean, v. 14, # 6, 835 – 841 (1998)

    Google Scholar 

  77. Ericksen J. L. Anisotropic fluids. Arch. Rat. Mech. and Analysis, v. 4, 231 – 237 (1960).

    Google Scholar 

  78. Ericksen J. L. Conservation laws for liquid crystals. Trans. Soc. Rheol. V.5. # 1. 23 – 34 (1961).

    Google Scholar 

  79. Ericksen J. L. Orientation induced by flow. Trans. Soc. of Rhelogy, v. 6, 275 – 291 (1962).

    Google Scholar 

  80. Eringen A.C., Chang T.S. A micropolar description of hydrodynamic turbulence. In: Recent Advances in Engineering Science. V. 5, part 2. Gordon and Breach, New York, 1 – 8 (1970).

    Google Scholar 

  81. Eringen A.C. Micromorphic description of turbulent channel flow. J. Math. Anal. and Appl., v. 39, # 1, 253 – 266 (1972).

    Google Scholar 

  82. Eskinazi S., Yeh H. An investigation of fully developed turbulent flows in a curved channel. J. Aeron. Sci., v. 23, # 1, 23 – 34 (1956).

    Google Scholar 

  83. Eskinazi S., Erian F.F. Energy reversal in turbulent flows. Phys. F.uids, v. 12, # 10, (1969).

    Google Scholar 

  84. Fedorov K.N. Selected Works in Physical Oceanology. Leningrad: Gidrometeoizdat, 162–173 (1991).

    Google Scholar 

  85. in Science and Technology. Hydromechanics, 97 – 338. Moscow: VINITI (1970).

    Google Scholar 

  86. Fenton D.L., Stukel J.J. Flow of a particulate suspension in the wake of a circular cylinder. Int. J. Multiphase Flow, v.3, # 2 (1976).

    Google Scholar 

  87. Ferrari C. On the differential equations of turbulent flow. In: Continuum Mechanics and Related Problems of Analysis. (The N.I. Muskhelishvili 80th Anniversary). Moscow, Nauka (1972).

    Google Scholar 

  88. Ferziger J.H. Large eddy numerical simulation of turbulent flows. AIAA J., v. 15, # 9, 1261– 1267 (1977).

    Google Scholar 

  89. Free Turbulent Shear Flows. Proc. Conf. at NASA Langley Research Center, Hampton, Virginia, July 20–21, 1972; v. 2 - Summary of Data. Washington D.C., NASA SP-321 (1973).

    Google Scholar 

  90. Frenkel Ya. I. Kinetic Theory of Fluids. Oxford University Press. ( 1946 ); Dover, New York (1955).

    Google Scholar 

  91. Fridman A.A., Keller L.V. Differentialgleichungen fur die turbulente Bewegung einer kompressibelen Flussigkeit. Proc. First Intern. Congress Appl. Mech., Delft, 395 – 405. 1925; In: A. A.Fridman. Collected works. Moscow: Nauka (1966).

    Google Scholar 

  92. Frost W., Moulden T. H., Eds. Handbook of Turbulence, v. 1, Plenum, New York (1977).

    Google Scholar 

  93. Gence J.N. Homogeneous turbulence. Annual Review Fluid Dynamics, v. 16, 201 –222 (1983).

    Google Scholar 

  94. Gledzer E.B., Dolzhansky F.V., Obukhov A.M. Systems of Hydrodynamic Types and Their Applications. Moscow: Nauka, 368 pp. (1981).

    Google Scholar 

  95. Goldshtick M.A. Vortex Flows. Novosibirsk: Nauka, 366 pp (1981).

    Google Scholar 

  96. Goldstein S., ed. Modern Development in Fluid Dynamics. Fluid Motion Panel. Aeronautical Research Committee. London (1943).

    Google Scholar 

  97. Gorodtzov V. A. Degeneration of fluid turbulence with internal rotation. J. A.pl. Mech. Tech. Phys., # 3 (1967).

    Google Scholar 

  98. Govindaraju S.P., Saffman P.G. Flow in a turbulent trailing vortex. P.ysics of Fluids. V.14. No 10. PP. 2074–2080 (1971).

    Google Scholar 

  99. Gray D.F., Linsky J.L., Eds. Stellar Turbulence. Berlin: Springer (1980).

    Google Scholar 

  100. Gurzhienko H.A. Action of liquid viscosity onto laws of turbulent stream inside straight tunnel with smooth walls. Proc. TSAGI, # 303. Moscow (1936).

    Google Scholar 

  101. Gurzhienko H.A. Account for viscosity within the Karman’s theory of turbulence. Proc. TSAGI, # 322. Moscow (1937).

    Google Scholar 

  102. Gurzhienko H.A. On steady turbulent stream inside conical diffusers with small angles of opening. Proc. TSAGI, # 462. Moscow (1939).

    Google Scholar 

  103. Haken H. Advanced Synergetics. Berlin: Springer-Verlag (1978).

    Book  Google Scholar 

  104. Happel J., Brenner H. Hydrodynamics of the Small Reynolds’s Numbers. Leyden: Noordhoff (1973).

    Google Scholar 

  105. Head M. R., Bandyopadhyay P. New aspects of turbulent structure. J. Fluid Mech., v. 107, 297 – 337 (1981).

    Google Scholar 

  106. Heinloo J. Phenomenological Mechanics of turbulent Flows. Tallin: Valgus (1984).

    Google Scholar 

  107. Heisin D.E. On derivation of averaged equations of glacial cover dynamics with account of asymmetry of stress tensor. Trans. USSR Acad. Sci. (Izvestia) Physics of Atmosphere and Ocean, v. 13, # 8 (1977).

    Google Scholar 

  108. Hellerman S. An adapted estimate of the wind stress on the World Ocean. Monthly Weather Rev., v. 95, # 9 (1967).

    Google Scholar 

  109. Hills R, Roberts P. Super fluid mechanics under high concentration of eddy’s lines. Archive for Rational Mechanics and Analysis, v. 66, # 1, 43 – 71 (1977).

    Google Scholar 

  110. Hinze J. O. Turbulence. Mechanism and Theory. New York: McGraw (1959).

    Google Scholar 

  111. Hinze J.O. Turbulent flow regions with shear stress and mean velocity gradient of opposite sign. Appl. Sci. Res., v. 22, 163 –175 (1970).

    Google Scholar 

  112. Howard L.N. Divergence formulas involving vorticity. Arch. Rational Mech. Anal., v. 1, 113–123 (1958).

    Google Scholar 

  113. Hsieh R. Conductive micro-magnetic fluid. The 4th Bulgaria Congress on Mechanics. Varna, 957 – 963 (1981).

    Google Scholar 

  114. Ibbetson A., Tritton D.J. Experiments on turbulence in a rotating fluid. J. Fluid Mech., v.68, pt 4, 639 – 672 (1975).

    Google Scholar 

  115. Immich H., Impulsive motion of a suspension: effect of antisymmetric stresses and particle rotation. Int. J. Multiphase Flow, v. 6, # 5, 441– 471 (1980).

    Google Scholar 

  116. Iskenderov D.Sh. Turbulent wake of suspension of rotating solid particles flow past a body. Applied Mechanics (Kiev), v. 16, # 2 (1980).

    Google Scholar 

  117. Iskenderov D. Sh. Equation of turbulent flow with intermittency. Applied Mechanics (Kiev), v. 16, # 12 (1980).

    Google Scholar 

  118. Iskenderov D. Sh., Nikolaevskii V.N. Turbulent wake of a body and asymmetric hydrodynamics. Letters Appl. Engng. Sci., v.5, # 3. (1977).

    Google Scholar 

  119. Iskenderov D. Sh., Nikolaevskii V.N. Mathematical model tornado-like motions with internal eddies. Proc. USSR Acad. Sci. (DAN), v.315, # 6. (1990).

    Google Scholar 

  120. Iskenderov D. Sh., Nikolaevskii V.N. Laminar core of atmosphere turbulent eddies. Proc. USSR Acad. Sci. (DAN), v.319, # 1. (1991).

    Google Scholar 

  121. Ivchenko V.O. Fluid dynamics on a rotating plane: averaged equations. Letters Appl. Engng. Sci., v.5, # 6 (1978).

    Google Scholar 

  122. Ivchenko V.O. On application of asymmetrical mechanics to geophysical hydrodynamics. Proc. Arctic and Antarctic Inst., v. 357. Leningrad: Gidrometeoizdat (1979).

    Google Scholar 

  123. Ivchenko V.O., Klepikov A.V. Quasigeostrophic model of ocean circulation with parametric account of mesoscale motions. Proc. Arctic and Antarctic. Inst., v. 387. Leningrad: Gidrometeoizdat (1982).

    Google Scholar 

  124. Ivchenko V.O., Maslovskiy M.I. On asymmetrical dynamics of glacial cover. Proc. Arctic and Antarctic Inst., v. 357. Leningrad: Gidrometeoizdat (1979).

    Google Scholar 

  125. Jaunzemis W. Continuum Mechanics, New York: McMillan (1967).

    Google Scholar 

  126. Joseph D. D. Stability of Fluid Motions. Berlin: Springer (1976).

    Google Scholar 

  127. USSR Acad. Sci., Physics of Atmosphere and Ocean, v. 8, # 10, (1972).

    Google Scholar 

  128. Kaloni P.N., De Silva C.N. Oriented fluids and the rheology of suspensions. Phys. Fluids, v. 12, # 5, 994–999 (1969).

    Google Scholar 

  129. Karman T Some aspects of the theory of turbulent motion. Proc. Intern. Congress for Applied Mechanics, Cambridge (1934).

    Google Scholar 

  130. Karman T., Howarth L. On statistical theory of isotropic turbulence. Proc. Roy. Soc., A164, 192–21. 5 (1938).

    Article  Google Scholar 

  131. Kiniaki N., Naomichi H. Turbulent near wake of a flat plate. Pt 1. Incompressible flow. Bull. Japan Soc. Mech. Engng., v.17, # 108 (1974).

    Google Scholar 

  132. Kline K.A. Prediction from polar fluid theory, which are independent of spin boundary condition. Trans. Soc. Rheol., v.19, p.139 (1975).

    Google Scholar 

  133. Kline K.A. A spin–vorticity relation for unidirectional plane flows of micropolar fluids. Int. J. Eng. Sci., v, 15, 131–134 (1977).

    Article  Google Scholar 

  134. Kline K.A., Carmi Sh. On the stability of motions of a dilute suspension of a rigid spherical particles. Bull. del’ Acad. Polonaise des Sci., ser. Sci. - Techn., v. 20, # 9 (1972).

    Google Scholar 

  135. Kline K.A., Sandberg T.K. A polar fluid estimate of relative force. Acta Mech., v. 26, 201–222 (1977).

    Article  Google Scholar 

  136. Kochin N.E. Vector Calculus and First Course in Tensor Calculus. Leningrad: USSR Acad. Sci. Press, the 7th edition (1951).

    Google Scholar 

  137. Kochin N.E., Kibel I.A., Rose N.V. Theoretical Hydrodynamics, v. 1/2. Leningrad - Moscow: OGIZ (1948).

    Google Scholar 

  138. Kolmogorov A. N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds’s numbers. Proc. USSR Acad. Sci. (DAN), v. 30, # 4 (1941); “Classic Papers on Statistical Theory”, Interscience, New York, 151–155 (1961).

    Google Scholar 

  139. Kolmogorov A. N. On degeneration of isotropic turbulence in an incompressible viscous liquid. Proc. USSR Acad. Sci. (DAN), v. 31, # 6 (1941); “Classic Papers on Statistical Theory”, Interscience, New York, 156–158 (1961).

    Google Scholar 

  140. Kolmogorov A. N. Dissipation of energy in locally isotropic turbulence. Proc. USSR Acad. Sci. (DAN), v. 32, # 1 (1941); “Classic Papers on Statistical Theory”, Interscience, New York, 159–161 (1961).

    Google Scholar 

  141. of USSR Acad. Sci., ser. Physics, v. 6, # 1 /2 (1942).

    Google Scholar 

  142. Kolmogorov A.N. On fragmentation of drops in turbulent flow. Proc. USSR Acad. Sci. (DAN), v. 66, # 5 (1949).

    Google Scholar 

  143. Kossin J.P., Schubert W.H., Montgomery M.T. Unstable interactions between a hurricane’s primary eyewall and the secondary ring of enhanced vorticity. J. Atmos. Sci., v. 57, # 24, 3893 – 3917 (2000).

    Google Scholar 

  144. Kovasznay L.S.G. Structure of the turbulent boundary layer. Phys. Fluids, v.10, pt 2, 25–30 (1967).

    Google Scholar 

  145. Kovasznay L.S.G., Kibens V., Blackwelder R.F. Large-scale motion in the intermittent region of turbulent boundary layers. J. Fluid Mech., v. 41, pt 2 (1970).

    Google Scholar 

  146. Krause F., Radler K.-H., Mean-Field Magneto-Hydrodynamics and Dynamo Theory. Berlin: Academia-Verlag (1980).

    Google Scholar 

  147. Krasnov Yu. K. Evolution of tornadoes. In: Nonlinear Waves: Structures and Bifurcations. Moscow: Nauka, 174 –189 (1987).

    Google Scholar 

  148. Kruka V., Eskinazi S. The wall – jet in a moving stream. J. Fluid Mech., v. 20, pt 4, 555 – 579 (1964).

    Google Scholar 

  149. Kurgansky M.V. Helicity generation in moist air. Physics of Atmosphere and Ocean, v. 29, # 4 (1993).

    Google Scholar 

  150. Kurgansky M.V. Vorticity generation in moist air. Physics of Atmosphere and Ocean, v. 34, # 2 (1998).

    Google Scholar 

  151. Laihtman D.L., Kagan B.A., Oganesian L.A., Piaskovskiy R.V. On global circulation in barotropic ocean of variable depth. Proc. USSR Acad. Sci. (DAN), v.198, # 2 (1971).

    Google Scholar 

  152. Landau L.D. On the problem of turbulence. Proc. USSR Acad. Sci. (DAN), v. 44, (1944).

    Google Scholar 

  153. Landau L.D., Lifshits E.M. Mechanics of Continuum Media, The 2nd edition. Moscow: Gostekhizdat (1953).

    Google Scholar 

  154. Landau L.D., Lifshits E.M Theory of Elasticity. The 41h edition. Moscow: Hauka (1987).

    Google Scholar 

  155. Laufer J. Investigation of Turbulent Flow in a Two-Dimensional Channel. NACA TN # 2123 (1950).

    Google Scholar 

  156. Laufer J. The Structure of Turbulence in Fully Developed Pipe Flow. NACA Report # 1174 (1955).

    Google Scholar 

  157. Lavrentiev M.A., Shabat B.V. Problems of Hydrodynamics and their Mathematical Models. Moscow: Nauka (1977).

    Google Scholar 

  158. Lavrovskiy E.K., Semenova I.P., Slezkin L.N., Fominykh V.V. Mediterranean lenses – fluid gyroscopes in ocean. Proc. Russian Acad Sci., (DAN), v. 375. # 1 (2000).

    Google Scholar 

  159. Leonard A. Energy cascade in large-eddy simulations of turbulent fluid flow. Advances in Geophysics, v. 18A, 237 – 248 (1974)

    Google Scholar 

  160. Leslie F. M. Some constitutive equations for liquid crystals. Arch. Ration. M.ch. and Analysis, v. 28. # 4, 265 – 283 (1968).

    Google Scholar 

  161. Levine V.M., Nikolaevskiy V.N. On volume averaging and continuum theory of elastic media with microstructure. In: Modern Problems of Mechanics and Aviation. Moscow: Mashinostroenie (1982).

    Google Scholar 

  162. Lewellen D.C., Lewellen W.S., Xia J. The influence of a local swirl ratio on tornado intensification near the surface. J. Atmos. Sci., v. 57, 527 – 544 (2000).

    Google Scholar 

  163. Liepmann H.W. Aspects of the turbulence problem. J. Appl. Math. Phys. (ZAMP), v. 3, # 5/6 (1952).

    Google Scholar 

  164. Lilly D.K. On the structure, energetic and propagation of rotating convective storms. J. Atmos. Sci., v. 43, Part 1: 113–125; Part 2: 126 – 140 (1986).

    Google Scholar 

  165. Lin C.C. On periodically oscillating wake in the Oseen approximation. In: Studies in Mathematics and Mechanics (Presented to R. Von Mises), 170 – 176, Acad. Press, New York (1954).

    Google Scholar 

  166. Lin C.C., Shu F. H.-S. Density wave theory of spiral structure. Astrophysics and General Relativity, v. 2, 236 – 329 (1968).

    Google Scholar 

  167. Listrov A.T. On model of viscous liquid with unsymmetrical stress tensor. J. Apple. Math. Mech. (PMM), v.31, # 1 (1967).

    Google Scholar 

  168. Littleton R.A. The Stability of Rotating Liquid Masses. Cambridge University Press (1953).

    Google Scholar 

  169. Loitzanskiy L.G. Mechanics of Fluids and Gases. Moscow: Nauka (1970).

    Google Scholar 

  170. Lorenz E.N. Deterministic nonperiodic flow. J. Atmos. Sci., v.20 (1963).

    Google Scholar 

  171. Lorenz E.N. The predictability of a flow, which possesses many scales of motion. Tellus, v. 21, # 3, 289 – 307 (1969).

    Google Scholar 

  172. Lugovzev B.A. Structure of the turbulent ring vortex in the disappearing viscosity limit. Proc. USSR Acad. Sci., v. 226, # 3 (1976).

    Google Scholar 

  173. Lumley J.L. Invariants in turbulent flow. Phys. Fluids, v. 9, # 11, 2111–2113 (1966).

    Google Scholar 

  174. Lupyan E.A., Mazurov A.A., Rutkevich P.B., Tur A.V. Large-scale vortex generation under spiral turbulence of convective nature. JETF, v. 102, # 5 (11), (1992).

    Google Scholar 

  175. Lurie M.V., Dmitriev N.M. Local model of turbulized medium. Proc.USSR Acad. Sci. (DAN), v.239, # 1 (1976).

    Google Scholar 

  176. Makarenko V.G., Tarasov V.F. Experimental model of tornado. J. Appl. Mech. Techn. Phys., # 5, 115 – 122 (1987).

    Google Scholar 

  177. Marshall J. S., Naghdi P.M. A thermodynamical theory of turbulence. L Basic developments. Phil. Trans. R. Soc. Lond., v. A327, 415 – 448 (1989).

    Google Scholar 

  178. Marshall J. S., Naghdi P.M. A thermodynamical theory of turbulence. Ii. Determination of constitutive coefficients and illustrative examples. Phil. Trans. R. Soc. London, v. A327, 449 – 475 (1989).

    Google Scholar 

  179. Marshall J. S., Naghdi P.M. Consequences of the second law for a turbulent fluid flow. Continuum Mech. Thermodynamics, v. 3, 65–77 (1991).

    Google Scholar 

  180. Mattioli G.D. Sur la theorie de la turbulence dans canaux. C.R. Acad. des Sci., Paris, v.196, # 8 (1933).

    Google Scholar 

  181. Mattioli G.D. Teoria della turbolenza. Rend. Acad. Naz. Dei Lincei, v.17, # 13, (1933).

    Google Scholar 

  182. Mattioli G.D. Teoria Dinamica dei Regimi Fluidi Turbolenti. Padova: CEDAM, (1937).

    Google Scholar 

  183. Maugin G.A., Eringen A.C. Deformable magnetically saturated media. Pt. 1–2, J. Math. Phys., v.13, # 2, 9, (1972).

    Google Scholar 

  184. Maugin G.A., Eringen A.C. Polarized elastic materials with electronic spin - a relativistic approach. J. Math. Phys., v.13, # 11 (1972).

    Google Scholar 

  185. Meachem S.P., Flieri G.R., Send U. Vortices in shear. Dyn. Atmos. Oceans, v. 14, 333 – 386 (1990).

    Google Scholar 

  186. Migun N.N., Prokhorenko P.P. Hydrodynamics and Heat Exchange in Gradient Flows of Microstructure Fluid. Minsk: Nauka i Teknika (1984).

    Google Scholar 

  187. Mindlin R.D. Micro - structure in linear elasticity. Archive of Rational Mechanics and Analysis, # 1, 51– 78 (1964).

    Google Scholar 

  188. Moffat H.K. The degree of knottedness of tangled vortex lines. J. Fluid Mech., v. 35, part 1, 117 – 129 (1968).

    Google Scholar 

  189. Moffat H.K. Turbulent dynamo action at low magnetic Reynolds number. J. Fluid Mech., v. 41, pt. 2, 435 –452 (1970).

    Google Scholar 

  190. Moffat H.K. Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press (1980).

    Google Scholar 

  191. Moin P., Kim J. The structure of the vorticity field in turbulent channel flow. Part 1. Analysis of instantaneous field and statistical correlators. J. Fluid Meek, v. 155, 441– 464 (1985).

    Google Scholar 

  192. Molinari J., Vallaro D. External influence on hurricane intensity. Part I: outflow layer eddy angular momentum fluxes. J. Atmos. Sci., v. 46, # 8, 1093 – 1105 (1989).

    Google Scholar 

  193. Monin A.S., Kamenkovich V.N., Kort V.M. Changeableness of World Ocean. Leningrad: Gidrometeoizdat (1974).

    Google Scholar 

  194. Monin A.S., Obukhov A.M. Basic laws of turbulent mixing in a ground layer of atmosphere. Trans. Geophys. Inst. USSR Acad. Sci., # 24 /151/, 163 –187 (1954).

    Google Scholar 

  195. Monin A.S., Yaglom A.M. Statistical hydromechanics. Mechanics of turbulence, parts 1/2.- Moscow: Fizmatgiz (1965 –1967).

    Google Scholar 

  196. Montgomery M.T., Vladimirov V.A., Denissenko P.V. An experimental study on hurricane mesovortices. J. Fluid Mech., v. 471, 1–32 (2002).

    Article  Google Scholar 

  197. Naue H. Laws of conservation of non-classical hydrodynamics and their application to turbulent channel streams. Numerical Methods of Continuum Mechanics (Novosibirsk), v. 4, # 1 (1973).

    Google Scholar 

  198. Naue G., Kohlmann J., Schmidt W., Scholz R., Wolf P. Modellierung and berechnung turbulenter stromungen and anwendungen in der technik. Teil 1–2, Technische Mech. (1980/1982).

    Google Scholar 

  199. Nee V.W., Kovasznay L.S.G. Simple phenomenological theory of turbulent shear flows. Physics of Fluids, v.12, # 3 (1969).

    Google Scholar 

  200. Nemirovskiy Yu. V., Heinloo Ya. L. On averaged characteristics of movement of turbulized electro-conductive liquid in plane channel in external homogeneous electrical and magnetic fields. Magn. Hydrodynamics (Riga), # 3 (1976).

    Google Scholar 

  201. Sib. Branch USSR Acad. Sci., ser. Techn., # 3 (1978).

    Google Scholar 

  202. Nemirovskiy Y.V., Heinloo J.L. Local –Rotational Theory of Turbulent Flows. Novosibirsk University, 92 pp (1980).

    Google Scholar 

  203. Nemirovskiy Y.V., Heinloo J.L. Rotational-Anisotropic Turbulent Flows in Channels and Tubes. Novosibirsk University, 76 pp (1982).

    Google Scholar 

  204. Nesterovich N.I. Averaged equations of turbulent flow of heterogeneous mixtures. Inst. Theor. Appl. Mech. Siberian Branch USSR Acad. Sci. Preprint # 8–82 of, 37 pp.(1982).

    Google Scholar 

  205. Nemtzov V.B. Statistical theory of hydrodynamic and kinetic processes in liquid crystals. Theor. and Math. Physics, v. 25, # 1 (1975).

    Google Scholar 

  206. Nevzgliadov V.N. Thermodynamics of turbulent systems. JETF, v.39, # 6/12 (1960).

    Google Scholar 

  207. USSR Acad. Sci., Mech. Fluids and Gases, # 5 (1967).

    Google Scholar 

  208. Nieuwstadt F.T.M., Van Dop H., Eds, Atmospheric Turbulence and Air Pollution Modeling. Dordrecht: Riedel (1982).

    Google Scholar 

  209. Nigmatulin R.I. Foundations of Mechanics of a Heterogeneous Medium. Moscow: Nauka (1978).

    Google Scholar 

  210. Nigmatulin R.I., Nikolaevskiy V.N. Diffusion of eddy and conservation of moment of momentum within dynamics of non-polar liquids. J. Appl. Math. Mech. (PMM), v.34, # 2 (1970).

    Google Scholar 

  211. Nikolaevskiy V.N. Convective diffusion in porous media. J. Appl. Math. Mech. (PMM), v. 23, # 6 (1959).

    Google Scholar 

  212. Nikolaevskiy V.N. Asymmetrical mechanics of continua and averaged description of turbulent flows. Proc. USSR (DAN), v. 184, # 6 (1969).

    Google Scholar 

  213. Nikolaevskiy V.N. Asymmetrical mechanics of turbulent flows. J. Appl. Math. and Mech., (PMM), v. 34, # 3 (1970).

    Google Scholar 

  214. Nikolaevskii V.N. Asymmetric mechanics and the theory of turbulence. Archwum Mechaniki Stosowanej, v. 24, # 1, 43 – 51 (1972).

    Google Scholar 

  215. Nikolaevskiy V.N. Asymmetrical mechanics of turbulent flows. Energy and entropy. J. Appl. Math. and Mech. (PMM), v. 47, # 1 (1973).

    Google Scholar 

  216. Nikolaevskii V.N. Asymmetric mechanics of turbulence. The transfer of momentum and vorticity in a wake behind the body. In: Omaggio a Carlo Ferrari, Libreria Edit. Torino Univ., Levrotto and Bella (1974).

    Google Scholar 

  217. Nikolaevskiy V.N. Stress tensor and averaging within continuum mechanics. J. Appl. Math. and Mech. (PMM), v. 39, # 2 (1975).

    Google Scholar 

  218. Nikolaevskii V.N. On nonlinearity and anisotropy of turbulent viscosity. Letters Appl. Engng Sci., v.3, 395–404 (1975).

    Google Scholar 

  219. Nikolaevskiy V.N. Some modern problems of mechanics of multiphase mixture. In: Modern Problems of Theoretical and Applied Mechanics. Kiev: Naukova Dumka, (1978).

    Google Scholar 

  220. of Armenian Acad. Sci., Mechanics, v.32, # 4 (1979).

    Google Scholar 

  221. Nikolaevskii V.N. Short note on a space averaging in continuum mechanics. Int. J. Multiphase Flow, v.6, # 4 (1980).

    Google Scholar 

  222. Nikolaevskiy V.N. Spatial averaging and the turbulence theory. In: Eddies and Waves. Moscow: Mir, 266 – 335 (1984).

    Google Scholar 

  223. of Acad. Sci. of Armenian SSR, Mechanics, v. 41, # 2 (1988).

    Google Scholar 

  224. Nikolaevskii V.N. Dynamics of viscoelastic media with internal oscillators. In: Recent Advances in Eng. Sci., Lecture Notes In Engng., # 39, Berlin: Springer-Verlag, 210 – 221 (1989).

    Google Scholar 

  225. Nikolaevskiy V.N., Basniev K.S., Gorbunov A.T., Zotov G. A. Mechanics of Saturated Porous Media. Moscow: Nedra, 1970.

    Google Scholar 

  226. Nikolaevskiy V.N., Iskenderov D. Sh., Korzhov E. N. Turbulent fluid as a continuum with inherent structure. In: Works of the III All Union Seminar on Models of Mechanics of Continuum Medium. Novosibirsk: Computer. Center Sib. Div. USSR Acad. Sci. (1976).

    Google Scholar 

  227. Novozhilov V.V. Rheology of steady turbulent flows of incompressible fluid. Fluid Mechanics, # 3 (1973).

    Google Scholar 

  228. Novozhilov V.V. Theory of Plane Turbulent Boundary Layer of Incompressible Fluid. Leningrad: Sudostroenie. 165 pp. (1977).

    Google Scholar 

  229. Ozmidov R.V. Horizontal Turbulence and Turbulent Exchange in the Ocean. Moscow: Nauka (1968).

    Google Scholar 

  230. Palmen E., Riehl H. Budget of angular momentum and energy in tropical cyclones. J. Meteorology, v. 14, 150 – 292 (1957).

    Google Scholar 

  231. Pauley R.L. Laboratory measurements of axial pressures in two-celled tornado - like vortices. J. Atmos. Sci., v. 40, # 20, 3392 – 3399 (1989).

    Google Scholar 

  232. Pekeris C.L., Accad Y. Solution of Laplace equations for the M 2 tide in the World Ocean. Phil. Roy. Soc. London, v. 265, 225–234 (1969).

    Google Scholar 

  233. Perry A. E., Chong M. S. On the mechanism of wall turbulence. J. Fluid Mech. V. 119. 173 – 217 (1982).

    Google Scholar 

  234. Perry A. E., Henbest S., Chong M. S. A theoretical and experimental study of wall turbulence. J. Fluid Mech. V. 165. 163 – 199 (1986).

    Google Scholar 

  235. Petrosyan L.G. Some Problems of Fluid Mechanics with Asymmetric Stress Tensor. Erevan University Press (1984).

    Google Scholar 

  236. Pielke R.A. et al. Atmospheric vortices. In: Green S.I., ed. Fluid Vorticies. Chapter 14, 617 – 650. Dordrecht: Kluwer. (1995).

    Google Scholar 

  237. Poincare H. Theorie des Tourbillions. Paris: G. Carre, (1893).

    Google Scholar 

  238. Polubarinova – Kochina P. Ya. On one nonlinear equation for partial derivatives met in the theory of underground flows. Proc. USSR Acad. Sci. (DAN), v. 63, # 6 (1948).

    Google Scholar 

  239. Prandtl L. Neuere Ergebnisse der Turbulenzforschung. V.D. 1, v. 77, # 5 (1933).

    Google Scholar 

  240. Prandtl L. Fuhrer durch die Stromungslehre. Braunschweig: Vieweg (1956).

    Google Scholar 

  241. Praturi A.K., Brodkey R.S. A stereoscopic visual study of coherent structures in turbulent shear flow. J. Fluid Mech., v.89, pt. 2 (1979).

    Google Scholar 

  242. Putterman S.J. Superfluid Hydrodynamics. North-Holland, Amsterdam (1974).

    Google Scholar 

  243. Rae W. Flows with significant orientation effects. AIAA J. V.14, # 1, 11 – 16 (1976).

    Google Scholar 

  244. Rakhmatulin H.A. Foundations of gas-dynamics of interpenetrating movements of continuum media. J. Appl. Math, Mech. (PMM), v. 20, # 2 (1956).

    Google Scholar 

  245. Reynolds O. On the dynamic theory of incompressible viscous fluids and the determination of the criterion. Phil. Trans. Roy. Soc, v. 186, 123 – 164 (1893).

    Google Scholar 

  246. Reynolds A.J. Turbulent Flows in Engineering. London. Wiley (1974).

    Google Scholar 

  247. Richardson L.F. The supply of energy from and to atmospheric eddies. Proc. Roy. Soc. A97, # 687, 354 – 373 (1920).

    Google Scholar 

  248. Robertson H. P. The invariant theory of isotropic turbulence. Proc. Camb. Phil. Soc., v, 36, # 2, 209–223 (1940).

    Article  Google Scholar 

  249. Robertson J. M. On turbulent plane Couette flow. Proceedings of the 6`“ Midwestern Conference on fluid mechanics. Austin: Univ. of Texas, 169 – 182 (1959).

    Google Scholar 

  250. Rogallo R.S., Moin P. Numerical simulation of turbulent flows. Annual Review Fluid Dynamics, v. 16, 99 – 137 (1984).

    Google Scholar 

  251. Rogers M.M., Main P. The structure of voracity field in homogeneous turbulent flows. J. Fluid Mech., v. 176, 33 – 66 (1987).

    Google Scholar 

  252. Rothfusz L.P., Lilly D.K. Quantitative and theoretical analyses of an experimental helical vortex. J. Atmos. Sci., v. 46, # 14, 2265 – 2279 (1989).

    Google Scholar 

  253. Rudiger G. On negative eddy viscosity in MHD turbulence. Magnetic Hydrodynamics (Riga), # 1, 3 –14 (1980).

    Google Scholar 

  254. Rubinow S.I., Keller J.B. The transverse force on a spinning sphere moving in a viscous fluid. J. Fluid Mech., v. 11, part 3 (1961).

    Google Scholar 

  255. Saffman P.G. The lift on a small sphere in a slow shear flow. J. Fluid Mech., v. 22, pt 2, 385 – 400 (1965).

    Google Scholar 

  256. Saffman P.G. A model for inhomogeneous turbulent flow. Proc. Roy. Soc. London, A317, 417–433 (1970).

    Google Scholar 

  257. Saffman P.G. Vortex Dynamics. Cambridge University Press (1992).

    Google Scholar 

  258. Schlichting H. Grenzschicht - Theorie. Karlsruhe: Braun. (1965).

    Google Scholar 

  259. Sedov L.I. Mechanics of Continuous Media. Singapore: World Scientific (1991).

    Google Scholar 

  260. Semn J. Mathematical Principles of Classical Fluid Mechanics. Handbuch der Physik (Band VIl7/1). Berlin: Springer (1959).

    Google Scholar 

  261. Shahinpoor M. On the continuum theory of liquid crystals of the nematic type. Iranian J. Sci. Technol., v. 4, # 4, 111 –142 (1975).

    Google Scholar 

  262. Shapiro L.J., Montgomery M.T. A three-dimensional balance theory for rapidly rotating vortices. J. Atmos. Sci., v. 50, # 19, 3322 – 3335 (1993).

    Google Scholar 

  263. Shroedinger E. What is Life? The Physical Aspects of the Living Cell. Dublin Inst. Advanced Studies (1945).

    Google Scholar 

  264. Shliomis M.I. On hydrodynamics of fluids with internal rotation. J. Experiment. Theor. Phys. (JE’11~), v. 51, 258 – 265 (1966).

    Google Scholar 

  265. Shteenbek M., Krause F. Origin of star and planet magnetic fields as result of turbulent motion of their matter. Magnetic Hydrodynamics (Riga), # 3 (1967).

    Google Scholar 

  266. Smagorinsky J. General circulation experiments with the primitive equations. Monthly Weather Review, v. 91, 99 – 65 (1963).

    Google Scholar 

  267. Sorokin V.S. On internal friction of fluids and gases with concealed angular impulse. J. Experiment. Theor. Phys. (JEIF), v. 13, 306 – 312 (1943).

    Google Scholar 

  268. Starr V. Physics of Negative Viscosity Phenomena. New York: McGraw (1968).

    Google Scholar 

  269. Stojanovic R. Recent developments in the theory of polar continua. Wien: Springer (1972).

    Google Scholar 

  270. Straub D., Lauster M. Angular momentum conservation law and Navier-Stokes theory. Int. J. Non-Linear Mechanics, v. 29, # 6, 823 – 833 (1994).

    Google Scholar 

  271. Sutton O.G. Micrometeorology. New York: McGraw, (1953).

    Google Scholar 

  272. Suyasov V.M. On nonsymmetrical model of viscous electromagnetic fluid. J. Appl. Mech. Techn. Physics, # 2 (1970).

    Google Scholar 

  273. Sychov V.V. Viscous interaction of non-stationary vortex with solid surface. Fluid Dynamics, # 4 (1989).

    Google Scholar 

  274. Tamm I E Theory of Electricity Foundation. Moscow - Leningrad: al FL (1949).

    Google Scholar 

  275. Tang K.K., Welch W.T. Remarks on Charney’s note on geostrophyc turbulence. J. Atmos. Sci., v. 58, 2009–2012 (2001).

    Article  Google Scholar 

  276. Tassul J.-L. Theory of Rotating Stars. Princeton University Press (1978).

    Google Scholar 

  277. Taylor G.I. On the dissipation of eddies. (1918).In: Taylor G.I. Scientific Papers, v. 2, 96–101, Cambridge University Press (1960).

    Google Scholar 

  278. Taylor G.I. The transport of vorticity and heat through fluids in turbulent motion. (1932).In: Taylor G.I. Scientific Papers, v. 2, 253–270, Cambridge University Press (1960).

    Google Scholar 

  279. Taylor G.I. Statistical theory of turbulence. Pts I – 1V. (1935).In: Taylor G.I. Scientific Papers, v. 2, 288–335, Cambridge University Press (1960).

    Google Scholar 

  280. Tilli D.R., Tilli J. Superfluidity and Superconductivity. New York: Reinhold (1974).

    Google Scholar 

  281. Townsend A.A. The fully developed turbulent wake of a circular cylinder. Austr. J. Sci. Res., A, v.2, # 2 (1949).

    Google Scholar 

  282. Townsend A.A. Structure of Turbulent Shear Flow. Cambridge University Press (1956).

    Google Scholar 

  283. Trofimov V.M. On effect of orientation turbulence properties on heat exchange. Vestnik of Moscow State Technical University, # 3 (1995).

    Google Scholar 

  284. Trofimov V.M. Physical effect in the Ranque vortex tubes. JETP Letters, # 5 (2000).

    Google Scholar 

  285. Trofimov V.M. Shtrekalkin S.I. On turbulent heat exchange in supersound flows with high local pressure gradient. Thermophysics of High Temperatures. V. 34, # 2, (1996).

    Google Scholar 

  286. Truesdell C. The Kinematics of Volrticity. Bloomington: Indiana University Press, 232 pp (1954).

    Google Scholar 

  287. Truesdell C. Stages of the development of the concept of stress.- In: Problems of Continuum Mechanics. (The N.I. Muskhelishvili 70th Aniversary), SIAM, Philadelphia, 556 – 564 (1961).

    Google Scholar 

  288. Truesdell K. Mechanical bases of diffusion. J. Chem. Phys., v. 37, # 10, 2336 – 2344 (1962).

    Google Scholar 

  289. Truesdell C. Six Lectures on Modern Natural Philosophy. New York: Springer, (1966).

    Google Scholar 

  290. Tsebers A.O. Internal rotation in hydrodynamics of weakly conducting dielectric suspensions. Fluid Dynamics, # 2 (1980).

    Google Scholar 

  291. Urpin V. Kinematic turbulent dynamo in a shear flow. Geophys. Astrophys. Fluid Dynamics, v. 95, 209 – 284 (2001).

    Google Scholar 

  292. Vainstein S.I., Zeldovich Ya. B., Ruzmaikin A.A. Turbulent Dynamo in Astrophysics. Moscow: Nauka (1980).

    Google Scholar 

  293. Volovitskaya Z.I. Mashkova G.B. On wind profile and turbulence features in a lower 300-meters atmosphere layer. In: “Studies of lower 300-meters Atmosphere Layer”, Moscow: USSR Acad. Sci. Press, 14 – 25 (1963).

    Google Scholar 

  294. Voronov V.A., Ivchenko V.O. On account for action of mesoscale movements onto large-scale oceanic circulation. Oceanologia, v.18, # 6 (1978).

    Google Scholar 

  295. Wang C.C. A new representation theorem for isotropic functions. Arch. Rational Mech. Anal., v. 36, # 3 (1970).

    Google Scholar 

  296. Wattendorf F.L. A study of the effect of curvature on fully developed turbulent flow. Proc. Roy. Soc. London, A148, 565 – 598 (1935).

    Google Scholar 

  297. Xi H.-W., Toral R., Gunton J.D., Tribelsky M.I. Extensive chaos in the Nikolaevskii model. Physical Review, v. E62, # 1, R17 – R20 (2000).

    Google Scholar 

  298. Yakimov Y. L. Tornado and special limit solution of the Navier – Stokes equations. Fluid Dynamics, # 6 (1988).

    Google Scholar 

  299. Yakimov Y. L. On class of non-stationary self-similar flows without “essential” singularities and tornado generation mechanism. Fluid Mechanics, # 4 (1992).

    Google Scholar 

  300. Yanenko N.N., Grigoriev Yu.N., Levinskiy V.B., Shavaliev M. Sh. Non-equilibrium statistical mechanics of point eddy systems in ideal liquid and its applications to modeling of turbulence. Novosibnirsk,, Inst. Theor. Appl. Mech., Preprint # 22–82, (1982).

    Google Scholar 

  301. Yantovskiy E.I. On analogy between transfer from two-dimensional turbulence and orientation magnetization. Magnetic Hydrodynamics (Riga), # 2 (1974).

    Google Scholar 

  302. Zagustin A.I. Equations of turbulent fluid flow. Trans. Voronezh State University, v. X, # 2/3, 7 – 39 (1938).

    Google Scholar 

  303. Zaikovskii V.N., Trofimov V.M. Mechanics of stratification of turbulent heat transfer in a sound field in the presence of rotational anisotropy of the flow. JETP Letters, v. 65, # 2 (1997).

    Google Scholar 

  304. Zeldovich Ya. B., Kompaneetz A.S. On the theory of heat conductivity depending on temperature. In “Collection dedicated to the 70th Birthday of Academician A.F. Ioffe”, Moscow: USSR Acad. Press, 40 – 51 (1950).

    Google Scholar 

  305. Zeldovich Ya. B., Raizer Yu. P. Physics of Shock Waves and High Temperature Hydrodynamics Phenomena. Moscow: PhysMatGiz (1966).

    Google Scholar 

  306. Zhang Z., Eisele K. On the directional dependence of turbulence properties in anisotropic turbulent flows. Experiments in Fluids. V. 24. 77 – 82 (1998).

    Google Scholar 

  307. Zhukovskiy N.E. Eddy theory of frontal resistance (1919) In: “Works Collection”, Moscow: G11TL, v. 4 (1949).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nikolaevskiy, V.N. (2003). Literature. In: Angular Momentum in Geophysical Turbulence. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0199-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0199-0_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6478-3

  • Online ISBN: 978-94-017-0199-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics