Skip to main content

Nitrogen Cycling in Marine Cyanobacterial Mats

  • Chapter
Fossil and Recent Biofilms

Abstract

Cyanobacteria are a diverse group of photoautotrophic prokaryotes. Many species possess a versatile metabolism but their dominant physiology is a plant-type oxygenic photosynthesis, using two photosystems (PS I and PS II) connected in series, allowing them to utilize light as the only source of energy (Bryant, 1994; Whitton & Potts, 2000). Just like plants, cyanobacteria use H2O as the electron donor and evolve O2. CO2 serves as the carbon source and is fixed through the reductive pentose-phosphate pathway (Calvin cycle). It is partly used for the synthesis of structural cell material while another part is diverted to a glycogen-like storage polymer. This polysaccharide is mobilized in the dark and energy is generated through aerobic respiration. To some extend, dark metabolism allows even growth of the cyanobacterium. Under anaerobic conditions several species have been shown to generate energy by fermentation of glycogen (Stal & Moezelaar, 1997). Under anaerobic conditions in the light and in the presence of sulfide, several cyanobacteria are able to switch to anoxygenic photosynthesis, involving only PS I (Cohen et al., 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azni b Abd Aziz S, Nedwell DB. 1986. The nitrogen cycle of an east coast, U.K. saltmarsh: II. Nitrogen fixation, nitrification, denitrification, tidal exchange. Estuarine Coastal and Shelf Science 22: 689–704.

    Article  Google Scholar 

  • Ben-Porath J, Zehr JP. 1994. Detection and characterization of cyanobacterial nifH genes. Applied and Environmental Microbiology 60: 880–887.

    Google Scholar 

  • Bergman B, Gallon JR, Rai AN, Stal LJ. 1997. N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiology Reviews 19: 139–185.

    Article  Google Scholar 

  • Bryant DA. 1994. The molecular biology of cyanobacteria. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Carpenter EJ, Van Raalte CD, Valiela I. 1978. Nitrogen fixation by algae in a Massachusetts salt marsh. Limnology and Oceanography 23: 318–327.

    Article  Google Scholar 

  • Cohen Y, Jorgensen BB, Revsbech NP, Poplawski R. 1986. Adaptation to hydrogen sulfide of oxygenic and anoxygenic photosynthesis among cyanobacteria. Applied and Environmental Microbiology 51: 398–407.

    Google Scholar 

  • Fay P. 1992. Oxygen relations of nitrogen fixation in cyanobacteria. Microbiological Reviews 56: 340–373.

    Google Scholar 

  • Flores E, Herrero A. 1994. Assimilatory nitrogen metabolism and its regulation. The Molecular Biology of Cyanobacteria 487–517.

    Google Scholar 

  • Garcia-Pichel F, Castenholz RW. 1991. Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. Journal of Phycology 27: 395–409.

    Article  Google Scholar 

  • Garcia-Pichel F, Prufert-Bebout L, Muyzer G. 1996. Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium. Applied and Environmental Microbiology 62: 3284–3291.

    Google Scholar 

  • Geitler L. 1932. Cyanophycea. Rabenhorst’ Kryptogamen Flora 14: 1–1196.

    Google Scholar 

  • Goto N, Kawamura T, Mitamura O, Terai H. 1999. Importance of extracellular organic carbon production in the total primary production by tidal-flat diatoms in comparison to phytoplankton. Marine Ecology Progress Series 190: 289–295.

    Article  Google Scholar 

  • Henriksen K, Kemp WM. 1988. Nitrification in estuarine and coastal marine sediments. In: Blackburn H, Sorensen J, eds. Nitrogen cycling in coastal marine environments. New York: John Wiley and Sons, 207–249.

    Google Scholar 

  • Herbert RA. 1999. Nitrogen cycling in coastal marine ecosystems. FEMS Microbiology Reviews 23: 563–590.

    Article  Google Scholar 

  • Hynes RK, Knowles R. 1984. Production of nitrous oxide by Nitrosomonas europaea: effects of acetylene, pH and oxygen. Canadian Journal of Microbiology 30: 1397–1404.

    Article  Google Scholar 

  • Janson S, Matveyev A, Bergman B. 1998. The presence and expression of hetR in the nonheterocystous cyanobacterium Symploca PCC 8002. FEMS Microbiology Letters 168: 173–179.

    Article  Google Scholar 

  • Jensen BB, Cox RP. 1983. Direct measurements of steady-state kinetics of cyanobacterial N2 uptake by membrane-leak mass spectrometry and comparisons between nitrogen fixation and acetylene reduction. Applied and Environmental Microbiology 45: 1331–1337.

    Google Scholar 

  • Jetten MSM, Strous M, van de Pas-Schoonen KT, Schalk J, van Dongen UGJM, Van de Graaf AA, Logemann S, Muyzer G, Van Loosdrecht MCM, Kuenen JG. 1999. The anaerobic oxidation of ammonium. FEMS Microbiology Reviews 22: 421–437.

    Article  Google Scholar 

  • Jones K. 1974. Nitrogen fixation in a salt marsh. Journal of Ecology 62: 553–565.

    Article  Google Scholar 

  • Joye SB, Paerl HW. 1993a. Contemporaneous nitrogen fixation and denitrification in intertidal microbial mats–rapid response to runoff events. Marine Ecology Progress Series 94: 267–274.

    Article  Google Scholar 

  • Joye SB, Paerl HW. 1993b. Nitrogen fixation and denitrification in the intertidal and subtidal environments of Tomales Bay, California. In: Oremland RS, ed. Biogeochemistry of global change. Radiatively active trace gases. New York: Chapman and Hall, 633–653.

    Chapter  Google Scholar 

  • Joye SB, Paerl HW. 1994. Nitrogen cycling in microbial mats: rates and patterns of denitrification and nitrogen fixation. Marine Biology 119: 285–295.

    Article  Google Scholar 

  • Jorgensen KS, Jensen HB, Sorensen J. 1984. Nitrous oxide production from nitrification and denitrification in marine sediment at low oxygen concentrations. Canadian Journal of Microbiology 30: 1073–1078.

    Article  Google Scholar 

  • Krumbein WE, Buchholz H, Franke P, Giani D, Giele C, Wonneberger K. 1979. 02 and H2S coexistence in stromatolites. Naturwissenschaften 66: 381–389.

    Google Scholar 

  • Kuenen JG, Robertson LA. 1988. Ecology of nitrification and denitrification. The Nitrogen and Sulphur Cycles 161–218.

    Google Scholar 

  • Middelburg JJ, Barranguet C, Boschker HTS, Herman PMJ, Moens T, Heip CHR. 2000. The fate of intertidal microphytobenthos carbon: An in situ 13C-labeling study. Limnology and Oceanography 45: 1224–1234.

    Article  Google Scholar 

  • Nedwell DB, Azni b Abd Aziz S. 1980. Heterotrophic nitrogen fixation in an intertidal salt marsh sediment. Estuarine Coastal and Shelf Science 10: 699–702.

    Google Scholar 

  • Ortega-Calvo JJ, Stal LJ. 1991. Diazotrophic growth of the unicellular cyanobacterium Gloeothece sp. PCC 6909 in continuous culture. Journal of General Microbiology 137: 1789–1797.

    Article  Google Scholar 

  • Pearson HW, Howsley R, Kjeldsen CK, Walsby AE. 1979. Aerobic nitrogenase activity associated with a non-heterocystous filamentous cyanobacterium. FEMS Microbiology Letters 5: 163–169.

    Article  Google Scholar 

  • Poth M. 1986. Dinitrogen gas production from nitrite by a Nitrosomonas isolate. Applied and Environmental Microbiology 52: 957–959.

    Google Scholar 

  • Revsbech NP, Jorgensen BB. 1983. Photosynthesis of benthic microflora measured with high spatial resolution by the oxygen microprofile method: Capabilities and limitations of the method. Limnology and Oceanography 28: 749–756.

    Article  Google Scholar 

  • Revsbech NP, Jorgensen BB, Blackburn TH, Cohen Y. 1983. Microelectrode studies of the photosynthesis and 02, H2S and pH profiles of a microbial mat. Limnology and Oceanography 28: 1062–1074.

    Article  Google Scholar 

  • Rysgaard S, Risgaard-Petersen N, Sloth NP. 1996. Nitrification, denitrification, and nitrate ammonification in sediments of two coastal lagoons in Southern France. Hydrobiologia 329: 133–141.

    Article  Google Scholar 

  • Savela K. 1983. Nitrogen fixation by the blue-green alga Calothrix scopulorum in coastal waters of the Baltic. Annals of Botany Fennica 20: 399–405.

    Google Scholar 

  • Schmidt I, Bock E. 1997. Anaerobic ammonia oxidation with nitrogen dioxide by Nltrosomonas eutropha. Archives of Microbiology 167: 106–111.

    Article  Google Scholar 

  • Sorensen J. 1987. Nitrate reduction in marine sediment: pathways and interactions with iron and sulfur cycling. Geomicrobiology Journal 5: 401–421.

    Article  Google Scholar 

  • Stal Li. 1995. Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytologist 131: 1–32.

    Article  Google Scholar 

  • Stal Li. 2000. Cyanobacterial mats and stromatolites. In: Whitton BA, Potts M, eds. The Ecology of Cyanobacteria. Dordrecht: Kluwer, 61–120.

    Google Scholar 

  • Stal LJ, Grossberger S, Krumbein WE. 1984. Nitrogen fixation associated with the cyanobacterial mat of a marine laminated microbial ecosystem. Marine Biology 82: 217–224.

    Article  Google Scholar 

  • Stal LJ, Krumbein WE. 1981. Aerobic nitrogen fixation in pure cultures of a benthic marine Oscillatoria (cyanobacteria). FEMS Microbiology Letters 11: 295–298.

    Article  Google Scholar 

  • Stal LJ, Krumbein WE. 1985. Isolation and characterization of cyanobacteria from a marine microbial mat. Botanica Marina 28: 351–365.

    Article  Google Scholar 

  • Stal LJ, Moezelaar R. 1997. Fermentation in cyanobacteria. FEMS Microbiology Reviews 21: 179–211.

    Article  Google Scholar 

  • Stal LJ, Paerl HW, Bebout B, Villbrandt M. 1994. Heterocystous versus non-heterocystous cyanobacteria in microbial mats. In: Stal LJ, Caumette P, eds. Microbial mats. Structure, development and environmental significance. Heidelberg: Springer Verlag, 403–414.

    Google Scholar 

  • Stal LJ, van Gemerden H, Krumbein WE. 1985. Structure and development of a benthic marine microbial mat. FEMS Microbiology Ecology 31: 111–125.

    Article  Google Scholar 

  • Steppe TF, Olson JB, Paerl HW, Litaker RW, Belnap J. 1996. Consortial N2 fixation: a strategy for meting nitrogen requirements of marine and terrestrial cyanobacterial mats. FEMS Microbiology Ecology 21: 149–156.

    Article  Google Scholar 

  • Strous M, Fuerst JA, Kramer EHM, Logemann S, Muyzer G, van de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MSM. 1999. Missing lithotroph identified as new planctomycete. Nature 400: 446–449.

    Google Scholar 

  • van Gemerden H. 1993. Microbial mats: A joint venture. Marine Geology 113: 3–25.

    Article  Google Scholar 

  • Villbrandt M, Stal LJ, Krumbein WE. 1990. Interactions between nitrogen fixation and oxygenic photosynthesis in a marine cyanobacterial mat. FEMS Microbiology Ecology 74: 59–72.

    Article  Google Scholar 

  • Visscher PT, Prins RA, van Gemerden H. 1992a. Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat. FEMS Microbiology Ecology 86: 283–293.

    Article  Google Scholar 

  • Visscher PT, van den Ende FP, Schaub BEM, van Gemerden H. 1992b. Competition between anoxygenic phototrophic bacteria and colorless sulfur bacteria in a microbial mat. FEMS Microbiology Ecology 101: 51–58.

    Article  Google Scholar 

  • Whitney DE, Woodwell GM, Howarth RW. 1975. Nitrogen fixation in Flax Pond: A Long Island salt marsh. Limnology and Oceanography 20: 640–643.

    Article  Google Scholar 

  • Whitton BA, Potts M. 2000. The ecology of cyanobacteria. Their diversity in time and space. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Zehr JP, Mellon M, Braun S, Litaker W, Steppe T, Paerl HW. 1995. Diversity of heterotrophic nitrogen fixation genes in a marine cyanobacterial mat. Applied and Environmental Microbiology 61: 2527–2532.

    Google Scholar 

  • Zehr JP, Mellon MT, Hiorns WD. 1997. Phylogeny of cyanobacterial nifH genes: evolutionary implications and potential applications to natural assemblages. Microbiology 143: 1443–1450.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stal, L.J. (2003). Nitrogen Cycling in Marine Cyanobacterial Mats. In: Krumbein, W.E., Paterson, D.M., Zavarzin, G.A. (eds) Fossil and Recent Biofilms. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0193-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0193-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6412-7

  • Online ISBN: 978-94-017-0193-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics